5 resultados para Biodegradação de hidrocarbonetos aromáticos

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se llevó a cabo la evaluación ambiental y el estudio del estado actual de la cuenca de la Laguna de El Hito referido a 18 hidrocarburos policíclicos aromáticos (PAHs) de 2 a 6 anillos bencénicos. Se determinó su origen a partir de diversos índices (%naftaleno, Fen/Ant y Flu/Pir), interpretándose tanto fuentes no antropogénicas (petrogénica) como antropogénicas (pirogénica). Se obtuvieron los mapas de distribución de las concentraciones de PAHs y de sus índices para localizar los puntos de concentraciones más elevadas. Ningún PAH superó las concentraciones marcadas por los Niveles Genéricos de Referencia (NGR) para la salud humana en los distintos usos del suelo del R.D.09/2005. Los PAHs con las mayores concentraciones fueron el naftaleno y el fenantreno.Environmental evaluation and analysis of the current state of El Hito Lake Basin referred to 18 polycyclic aromatic hydrocarbons (PAHs) with 2 to 6 benzene rings was carried out. Different indexes were used to determine the source of PAHs (% naftalene, Phe/Ant and Flu/Pyr). Both non anthropogenic (petrogenic) and anthropogenic (pyrogenic) sources were interpreted. Distribution maps for PAHs and indexes were plotted to locate the position of the higher concentrations and, therefore, their possible sources. None of these compounds showed concentrations above the Soil Screening Levels (SSL) for human health in the different uses of soil as is established in R.D.09/2005. The ones that reached the highest concentrations were naphthalene and phenanthrene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los betunes modificados con polímeros (BMP) son ampliamente utilizados en la pavimentación de carreteras sometidas a gran afluencia de vehículos y a condiciones extremas de temperatura. La presencia de polímero en contacto con el betún amplía notablemente el intervalo de temperaturas en las que el betún mantiene sus prestaciones. En general los betunes modificados con polímero presentan un aumento significativo de la resistencia a la deformación permanente en el intervalo de elevadas temperaturas, sin que su compo rtamiento sufra deterioro a bajas temperaturas. Cuando un polímero se añade al betún tiene lugar su hinchamiento a partir de las moléculas de aromáticos ligeros presentes en el betún. A bajas concentraciones de polímero, aparece una morfología bifásica en la que una fase rica en polímero se dispersa en una matriz malténica enriquecida en asfaltenos. La existencia de esta estructura bifásica es la llave que controla la mejora en las propiedades de los BMP en relación al betún puro. En la literatura existen muchos trabajos dedicados a investigar las propiedades y morfología de los BMP, sin embargo en pocos se hace referencia a la influencia de la estructura del betún. Este trabajo está enfocado a relacionar la estructura/composición del betún con la compatibilidad del sistema SBS/betún/azufre. Para ello se han elegido cuatro betunes de distinta procedencia denominados, A17, A500, M18, M170, que mezclados convenientemente han sido utilizados en la preparación de betún modificado con SBS y vulcanizado con azufre. La fracción en peso de SBS, en relación al contenido de betún, ha sido del 3%. Se han determinado propiedades tales como viscosidad, penetración y temperatura anillo-bola, así como la estabilidad en almacenamiento a elevada temperatura. Finalmente la estabilidad de estos sistemas se ha analizado en función de la estructura y la composición de los betunes utilizados en su preparación

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine if the soils, waters and plants from the Aliaga dump contained polycyclic aromatic hydrocarbons (PAHs) and their quantification.The results showed that PAHs concentrations in soils are in general higher than the reference levels from the Spanish legislation. Waters and plants contained PAHs but in low concentrations. The possible actions for remediation (photodegradation and bioremediation) seem to be unviable here because of the large volume of materials involved, although its use as an additive for the cement industry and derivatives can be considered. It is proposed that fluorantene in waters, and phenanthrene and benzo[ghi]perilene in soils be considered as pollutants as well as to study the incorporation of PAHs to plants. Key-words: Polycyclic aromatic hydrocarbons, soil, plant and water contamination, fly- ash, power plant. RESUMEN: El objetivo de este estudio fue determinar y cuantificar los hidrocarburos policíclicos aromáticos (PAHs) en los suelos, plantas y aguas de la Escombrera de Aliaga. La concentración de PAHs en las cenizas supera, en general, los valores establecidos en la legislación española.Las aguas y plantas contienen PAHs, aunque en concentraciones bajas. La remoción de los materiales para someterlos a fotodegradación y biorremediación es inviable debido al gran volumen de la escombrera, aunque se plantea su uso como aditivo en la fabricación de productos derivados del cemento. Se propone incluir el fenantreno y benzo[ghi]perileno en la normativa de suelos, así como el naftaleno en la de aguas y la elaboración de una legislación sobre la incorporación de estos compuestos a las plantas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se estudia la modelización y optimización de procesos industriales de separación mediante el empleo de mezclas de líquidos iónicos como disolventes. Los disolventes habitualmente empleados en procesos de absorción o extracción suelen ser componentes orgánicos muy volátiles y dañinos para la salud humana. Las innovadoras propiedades que presentan los líquidos iónicos, los convierten en alternativas adecuadas para solucionar estos problemas. La presión de vapor de estos compuestos es muy baja y apenas varía con la temperatura. Por tanto, estos compuestos apenas se evaporan incluso a temperaturas altas. Esto supone una gran ventaja en cuanto al empleo de estos compuestos como disolventes industriales ya que permite el reciclaje continuo del disolvente al final del proceso sin necesidad de introducir disolvente fresco debido a la evaporación del mismo. Además, al no evaporarse, estos compuestos no suponen un peligro para la salud humana por inhalación; al contrario que otros disolventes como el benceno. El único peligro para la salud que tienen estos compuestos es por tanto el de contacto directo o ingesta, aunque de hecho muchos Líquidos Iónicos son inocuos con lo cual no existe peligro para la salud ni siquiera a través de estas vías. Los procesos de separación estudiados en este trabajo, se rigen por la termodinámica de fases, concretamente el equilibrio líquido-vapor. Para la predicción de los equilibrios se ha optado por el empleo de modelos COSMO (COnductor-like Screening MOdel). Estos modelos tienen su origen en el empleo de la termodinámica de solvatación y en la mecánica cuántica. En el desarrollo de procesos y productos, químicos e ingenieros frecuentemente precisan de la realización de cálculos de predicción de equilibrios de fase. Previamente al desarrollo de los modelos COSMO, se usaban métodos de contribución de grupos como UNIFAC o modelos de coeficientes de actividad como NRTL.La desventaja de estos métodos, es que requieren parámetros de interacción binaria que únicamente pueden obtenerse mediante ajustes por regresión a partir de resultados experimentales. Debido a esto, estos métodos apenas tienen aplicabilidad para compuestos con grupos funcionales novedosos debido a que no se dispone de datos experimentales para llevar a cabo los ajustes por regresión correspondientes. Una alternativa a estos métodos, es el empleo de modelos de solvatación basados en la química cuántica para caracterizar las interacciones moleculares y tener en cuenta la no idealidad de la fase líquida. Los modelos COSMO, permiten la predicción de equilibrios sin la necesidad de ajustes por regresión a partir de resultados experimentales. Debido a la falta de resultados experimentales de equilibrios líquido-vapor de mezclas en las que se ven involucrados los líquidos iónicos, el empleo de modelos COSMO es una buena alternativa para la predicción de equilibrios de mezclas con este tipo de materiales. Los modelos COSMO emplean las distribuciones superficiales de carga polarizada (sigma profiles) de los compuestos involucrados en la mezcla estudiada para la predicción de los coeficientes de actividad de la misma, definiéndose el sigma profile de una molécula como la distribución de probabilidad de densidad de carga superficial de dicha molécula. Dos de estos modelos son COSMO-RS (Realistic Solvation) y COSMO-SAC (Segment Activity Coefficient). El modelo COSMO-RS fue la primera extensión de los modelos de solvatación basados en continuos dieléctricos a la termodinámica de fases líquidas mientras que el modelo COSMO-SAC es una variación de este modelo, tal y como se explicará posteriormente. Concretamente en este trabajo se ha empleado el modelo COSMO-SAC para el cálculo de los coeficientes de actividad de las mezclas estudiadas. Los sigma profiles de los líquidos iónicos se han obtenido mediante el empleo del software de química computacional Turbomole y el paquete químico-cuántico COSMOtherm. El software Turbomole permite optimizar la geometría de la molécula para hallar la configuración más estable mientras que el paquete COSMOtherm permite la obtención del perfil sigma del compuesto mediante el empleo de los datos proporcionados por Turbomole. Por otra parte, los sigma profiles del resto de componentes se han obtenido de la base de datos Virginia Tech-2005 Sigma Profile Database. Para la predicción del equilibrio a partir de los coeficientes de actividad se ha empleado la Ley de Raoult modificada. Se ha supuesto por tanto que la fracción de cada componente en el vapor es proporcional a la fracción del mismo componente en el líquido, dónde la constante de proporcionalidad es el coeficiente de actividad del componente en la mezcla multiplicado por la presión de vapor del componente y dividido por la presión del sistema. Las presiones de vapor de los componentes se han obtenido aplicando la Ley de Antoine. Esta ecuación describe la relación entre la temperatura y la presión de vapor y se deduce a partir de la ecuación de Clausius-Clapeyron. Todos estos datos se han empleado para la modelización de una separación flash usando el algoritmo de Rachford-Rice. El valor de este modelo reside en la deducción de una función que relaciona las constantes de equilibrio, composición total y fracción de vapor. Para llevar a cabo la implementación del modelado matemático descrito, se ha programado un código empleando el software MATLAB de análisis numérico. Para comprobar la fiabilidad del código programado, se compararon los resultados obtenidos en la predicción de equilibrios de mezclas mediante el código con los resultados obtenidos mediante el simulador ASPEN PLUS de procesos químicos. Debido a la falta de datos relativos a líquidos iónicos en la base de datos de ASPEN PLUS, se han introducido estos componentes como pseudocomponentes, de manera que se han introducido únicamente los datos necesarios de estos componentes para realizar las simulaciones. El modelo COSMO-SAC se encuentra implementado en ASPEN PLUS, de manera que introduciendo los sigma profiles, los volúmenes de la cavidad y las presiones de vapor de los líquidos iónicos, es posible predecir equilibrios líquido-vapor en los que se ven implicados este tipo de materiales. De esta manera pueden compararse los resultados obtenidos con ASPEN PLUS y como el código programado en MATLAB y comprobar la fiabilidad del mismo. El objetivo principal del presente Trabajo Fin de Máster es la optimización de mezclas multicomponente de líquidos iónicos para maximizar la eficiencia de procesos de separación y minimizar los costes de los mismos. La estructura de este problema es la de un problema de optimización no lineal con variables discretas y continuas, es decir, un problema de optimización MINLP (Mixed Integer Non-Linear Programming). Tal y como se verá posteriormente, el modelo matemático de este problema es no lineal. Por otra parte, las variables del mismo son tanto continuas como binarias. Las variables continuas se corresponden con las fracciones molares de los líquidos iónicos presentes en las mezclas y con el caudal de la mezcla de líquidos iónicos. Por otra parte, también se ha introducido un número de variables binarias igual al número de líquidos iónicos presentes en la mezcla. Cada una de estas variables multiplican a las fracciones molares de sus correspondientes líquidos iónicos, de manera que cuando dicha variable es igual a 1, el líquido se encuentra en la mezcla mientras que cuando dicha variable es igual a 0, el líquido iónico no se encuentra presente en dicha mezcla. El empleo de este tipo de variables obliga por tanto a emplear algoritmos para la resolución de problemas de optimización MINLP ya que si todas las variables fueran continuas, bastaría con el empleo de algoritmos para la resolución de problemas de optimización NLP (Non-Linear Programming). Se han probado por tanto diversos algoritmos presentes en el paquete OPTI Toolbox de MATLAB para comprobar cuál es el más adecuado para abordar este problema. Finalmente, una vez validado el código programado, se han optimizado diversas mezclas de líquidos iónicos para lograr la máxima recuperación de compuestos aromáticos en un proceso de absorción de mezclas orgánicas. También se ha usado este código para la minimización del coste correspondiente a la compra de los líquidos iónicos de la mezcla de disolventes empleada en la operación de absorción. En este caso ha sido necesaria la introducción de restricciones relativas a la recuperación de aromáticos en la fase líquida o a la pureza de la mezcla obtenida una vez separada la mezcla de líquidos iónicos. Se han modelizado los dos problemas descritos previamente (maximización de la recuperación de Benceno y minimización del coste de operación) empleando tanto únicamente variables continuas (correspondientes a las fracciones o cantidades molares de los líquidos iónicos) como variables continuas y binarias (correspondientes a cada uno de los líquidos iónicos implicados en las mezclas).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desde hace ya algunos años la búsqueda de energías alternativas a los combustibles fósiles es uno de los grandes retos a nivel mundial. Según los datos de la Agencia Estadounidense de Información sobre la Energía (EIA), el consumo energético en el mundo fue de 18 TW en 2015 y se espera que este consumo se dispare hasta alcanzar los 25 TW en 2035 y los 30 TW en 2050. Parece, por tanto, necesario dar respuesta a esta demanda creciente, y no solo considerar de dónde va a proceder esta energía sino también cuáles van a ser las consecuencias derivadas de este aumento en el consumo energético. Ya en el año 2007 la Academia Sueca reconoció, con la concesión del Premio Nobel de la Paz al ex vicepresidente de Estados Unidos Al Gore y al Grupo Intergubernamental de expertos sobre Cambio Climático (IPCC) de Naciones Unidas, la necesidad de concienciación de que el modelo de desarrollo que tenemos es ecológicamente insostenible. En este contexto, las energías renovables en general y, la energía solar en particular, tienen mucho que ofrecer. Una de las mayores ventajas de la energía solar respecto a las otras fuentes de energía es su enorme potencial, que los investigadores que trabajan en este campo resumen con la siguiente afirmación: la cantidad de energía solar que la Tierra recibe en una hora es mayor que el consumo mundial en el planeta durante todo un año. Al hablar de energía solar se suele distinguir entre energía solar térmica y energía solar fotovoltaica; la primera consiste en aprovechar la energía del sol para convertirla en calor, mientras que la segunda pretende transformar la radiación solar en electricidad por medio de unos dispositivos llamados células fotovoltaicas. Y es precisamente en este campo donde se centra este proyecto. El fundamento científico en el que se basan las células fotovoltaicas es el efecto fotoeléctrico, descubierto por Becquerel en 1839. No obstante, tendrían que pasar más de cien años hasta que investigadores de los laboratorios Bell en 1954 desarrollaran una célula de silicio monocristalino con un rendimiento del 6%. Y en 1958, con el lanzamiento del satélite Vangard I equipado con paneles solares se pudo demostrar la viabilidad de esta tecnología. Desde entonces, la investigación en esta área ha permitido desarrollar dispositivos con eficiencias superiores al 20%. No obstante, la fotovoltaica tradicional basada en elementos semiconductores tipo silicio presenta algunos inconvenientes como el impacto visual de los parques solares, los costes elevados o los rendimientos no muy altos. El descubrimiento de materiales orgánicos semiconductores, reconocido con el Premio Nobel de Química a Heeger, MacDiarmid y Shirakawa en 1976, ha permitido ampliar el campo de la fotovoltaica, ofreciendo la posibilidad de desarrollar células solares orgánicas frente a las células tradicionales inorgánicas. Las células fotovoltaicas orgánicas resultan atractivas ya que, en principio, presentan ventajas como reducción de costes y facilidad de procesado: los materiales orgánicos se pueden elaborar mediante procesos de impresión y recubrimiento de alta velocidad, aerosoles o impresión por inyección y se podrían aplicar como una pintura sobre superficies, tejados o edificios. La transformación de la energía solar en corriente eléctrica es un proceso que transcurre en varias etapas: 1. Absorción del fotón por parte del material orgánico. 2. Formación de un excitón (par electrón-hueco), donde el electrón, al absorber el fotón, es promovido a un nivel energético superior dejando un hueco en el nivel energético en el que se encontraba inicialmente. 3. Difusión del excitón, siendo muy decisiva la morfología del dispositivo. 4. Disociación del excitón y transporte de cargas, lo que requiere movilidades altas de los portadores de cargas. 5. Recolección de cargas en los electrodos. En el diseño de las células solares orgánicas, análogamente a los semiconductores tipo p y tipo n inorgánicos, se suelen combinar dos tipos de materiales orgánicos: un material orgánico denominado dador, que absorbe el fotón y que a continuación deberá ceder el electrón a un segundo material orgánico, denominado aceptor. Para que la célula resulte eficaz es necesario que se cumplan simultáneamente varios requisitos: 1. La energía del fotón incidente debe ser superior a la diferencia de energía entre los orbitales frontera del material orgánico, el HOMO (orbital molecular ocupado de más alta energía) y el LUMO (orbital desocupado de menor energía). Para ello, se necesitan materiales orgánicos semiconductores que presenten una diferencia de energía entre los orbitales frontera (ELUMO-EHOMO= band gap) menor de 2 eV. Materiales orgánicos con estas características son los polímeros conjugados, donde alternan dobles enlaces carbono-carbono con enlaces sencillos carbono-carbono. Uno de los polímeros orgánicos más utilizados como material dador es el P3HT (poli-3-hexiltiofeno). 2. Tanto el material orgánico aceptor como el material orgánico dador deben presentar movilidades altas para los portadores de carga, ya sean electrones o huecos. Este es uno de los campos en los que los materiales orgánicos se encuentran en clara desventaja frente a los materiales inorgánicos: la movilidad de electrones en el silicio monocristalino es 1500 cm2V-1s-1 y en el politiofeno tan solo 10-5 cm2V-1s-1. La movilidad de los portadores de carga aparece muy relacionada con la estructura del material, cuanto más cristalino sea el material, es decir, cuanto mayor sea su grado de organización, mejor será la movilidad. Este proyecto se centra en la búsqueda de materiales orgánicos que puedan funcionar como dadores en el dispositivo fotovoltaico. Y en lugar de centrarse en materiales de tipo polimérico, se ha preferido explorar otra vía: materiales orgánicos semiconductores pero con estructura de moléculas pequeñas. Hay varias razones para intentar sustituir los materiales poliméricos por moléculas pequeñas como, por ejemplo, la difícil reproducibilidad de resultados que se encuentra con los materiales poliméricos y su baja cristalinidad, en general. Entre las moléculas orgánicas sencillas que pudieran ser utilizadas como el material dador en una célula fotovoltaica orgánica llama la atención el atractivo de las moléculas de epindolidiona y quinacridona. En los dos casos se trata de moléculas planas, con enlaces conjugados y que presentan anillos condensados, cuatro en el caso de la epindolidiona y cinco en el caso de la quinacridona. Además ambos compuestos aparecen doblemente funcionalizados con grupos dadores de enlace de hidrógeno (NH) y aceptores (grupos carbonilo C=O). Por su estructura, estas moléculas podrían organizarse tanto en el plano, mediante la formación de varios enlaces de hidrógeno intermoleculares, como en apilamientos verticales tipo columnar, por las interacciones entre las superficies de los anillos aromáticos que forman parte de su estructura (tres en el caso de la quinacridona) y dos (en el caso de la epindolidiona). Esta organización debería traducirse en una mayor movilidad de portadores de carga, cumpliendo así con uno de los requisitos de un material orgánico para su aplicación en fotovoltaica. De estas dos moléculas, en este trabajo se profundiza en las moléculas tipo quinacridona, ya que el desarrollo de las moléculas tipo epindolidiona se llevó a cabo en un proyecto de investigación financiado por una beca Repsol y concedida a Guillermo Menéndez, alumno del Grado en Tecnologías Industriales de esta escuela. La quinacridona es uno de los pigmentos más utilizados y se estima que la venta anual de los mismos alcanza las 4.000 toneladas por año. Son compuestos muy estables tanto desde el punto de vista térmico como fotoquímico y su síntesis no resulta excesivamente compleja. Son además compuestos no tóxicos y la legislación autoriza su empleo en cosméticos y juguetes para niños. El inconveniente principal de la quinacridona es su elevada insolubilidad (soluble en ácido sulfúrico concentrado), por lo que aunque resulta un material muy atractivo para su aplicación en fotovoltaica, resulta difícil su implementación. De hecho, solo es posible su incorporación en dispositivos fotovoltaicos funcionalizando la quinacridona con algún grupo lábil que le proporcione la suficiente solubilidad para poder ser aplicado y posteriormente eliminar dicho grupo lábil. La propuesta inicial de este proyecto es intentar desarrollar quinacridonas que sean solubles en los disolventes orgánicos más habituales tipo cloruro de metileno o cloroformo, para de este modo poder cumplir con una de las ventajas que, a priori, ofrecen las células fotovoltaicas orgánicas frente a las inorgánicas, como es la facilidad de su procesado. El objetivo se centra, por lo tanto, en la preparación de quinacridonas solubles pero sin renunciar a su capacidad para formar enlaces de hidrógeno ni a su capacidad de apilamiento π-π, ya que se quiere mantener los valores de movilidad de portadores para la quinacridona (movilidad de huecos 0,2 cm2V-1s-1). En primer lugar se intenta la preparación de una quinacridona que presenta la ventaja de que los materiales de partida para su síntesis son comerciales: a partir del succinato de dimetilo y de 4-tetradecilanilina se podía acceder, en una síntesis de cuatro etapas, a la molécula deseada. La elección de la amina aromática con la sustitución en posición 4 presenta la ventaja de que en la etapa de doble ciclación necesaria en la síntesis, solo se forma uno de los regioisómeros posibles; este hecho es de gran relevancia para conseguir compuestos con altas movilidades, ya que la presencia de mezcla de regioisómeros, como se ha demostrado con otros compuestos como el P3HT, reduce considerablemente la movilidad de los portadores. Se obtiene así una quinacridona funcionalizada con dos cadenas lineales de 14 carbonos cada una en posiciones simétricas sobre los anillos aromáticos de los extremos. Se espera que la presencia de la superficie aromática plana y las dos cadenas lineales largas pueda conducir a una organización del material similar a la de un cristal líquido discótico. Sin embargo, el producto obtenido resulta ser tremendamente insoluble, no siendo suficiente las dos cadenas de 14 carbonos para aumentar su solubilidad respecto a la quinacridona sin funcionalizar. Se prepara entonces un derivado de esta quinacridona por alquilación de los nitrógenos. Este derivado, incapaz de formar enlaces de hidrógeno, resulta ser fácilmente soluble lo que proporciona una idea de la importancia de los enlaces de hidrógeno en la organización del compuesto. La idea inicial es conseguir, con una síntesis lo más sencilla posible, una quinacridona soluble, por lo que se decide utilizar la 4-t-butilanilina, también comercial, en lugar de la 4-tetradecilanilina. La cadena de t-butilo solo aporta cuatro átomos de carbono, pero su disposición (tres grupos metilo sobre un mismo átomo de carbono) suele conducir a resultados muy buenos en términos de solubilidad. Otra vez, la incorporación de los dos grupos t-butilo resulta insuficiente en términos de solubilidad del material. En estos momentos, y antes de explorar otro tipo de modificaciones sobre el esqueleto de quinacridona, en principio más complejos, se piensa en utilizar una amina aromática funcionalizada en la posición adyacente a la amina, de manera que el grupo funcional cumpliera una doble misión: por una parte, proporcionar solubilidad y por otra parte, perturbar ligeramente la formación de enlaces de hidrógeno, que han evidenciado ser una de las causas fundamentales para la insolubilidad del compuesto. Se realiza un análisis sobre cuáles podrían ser los grupos funcionales más idóneos en esta posición, valorando dos aspectos: el impedimento estérico que dificultaría la formación de enlaces de hidrógeno y la facilidad en su preparación. Ello conduce a optar por un grupo tioéter como candidato, ya que el 2-aminobencenotiol es un compuesto comercial y su adecuada funcionalización conduciría a una anilina con las propiedades deseadas. Se realiza simultáneamente la preparación de una quinacridona con una cadena de 18 átomos de carbono y otra quinacridona de cadena corta pero ramificada. Y finalmente, con estas quinacridonas se logra obtener compuestos solubles. Por último, se realiza el estudio de sus propiedades ópticas, mediante espectroscopia UV-Visible y fluorescencia, y se determinan experimentalmente los band gap, que se aproximan bastante a los resultados teóricos, en torno a 2,2 eV en disolución. No obstante, y aun cuando el band gap pueda parecer algo elevado, se sabe que en disolución las barreras energéticas son más elevadas que cuando el material se deposita en film. Por otra parte, todas las quinacridonas sintetizadas han demostrado una elevada estabilidad térmica. Como resumen final, el trabajo que aquí se presenta, ha permitido desarrollar una ruta sintética hacia derivados de quinacridona solubles con buenas perspectivas para su aplicación en dispositivos fotovoltaicos.