4 resultados para English Abstract
em Massachusetts Institute of Technology
Resumo:
This paper describes a natural language system START. The system analyzes English text and automatically transforms it into an appropriate representation, the knowledge base, which incorporates the information found in the text. The user gains access to information stored in the knowledge base by querying it in English. The system analyzes the query and decides through a matching process what information in the knowledge base is relevant to the question. Then it retrieves this information and formulates its response also in English.
Resumo:
This report investigates the process of focussing as a description and explanation of the comprehension of certain anaphoric expressions in English discourse. The investigation centers on the interpretation of definite anaphora, that is, on the personal pronouns, and noun phrases used with a definite article the, this or that. Focussing is formalized as a process in which a speaker centers attention on a particular aspect of the discourse. An algorithmic description specifies what the speaker can focus on and how the speaker may change the focus of the discourse as the discourse unfolds. The algorithm allows for a simple focussing mechanism to be constructed: and element in focus, an ordered collection of alternate foci, and a stack of old foci. The data structure for the element in focus is a representation which encodes a limted set of associations between it and other elements from teh discourse as well as from general knowledge.
Resumo:
How can one represent the meaning of English sentences in a formal logical notation such that the translation of English into this logical form is simple and general? This report answers this question for a particular kind of meaning, namely quantifier scope, and for a particular part of the translation, namely the syntactic influence on the translation. Rules are presented which predict, for example, that the sentence: Everyone in this room speaks at least two languages. has the quantifier scope AE in standard predicate calculus, while the sentence: At lease two languages are spoken by everyone in this room. has the quantifier scope EA. Three different logical forms are presented, and their translation rules are examined. One of the logical forms is predicate calculus. The translation rules for it were developed by Robert May (May 19 77). The other two logical forms are Skolem form and a simple computer programming language. The translation rules for these two logical forms are new. All three sets of translation rules are shown to be general, in the sense that the same rules express the constraints that syntax imposes on certain other linguistic phenomena. For example, the rules that constrain the translation into Skolem form are shown to constrain definite np anaphora as well. A large body of carefully collected data is presented, and used to assess the empirical accuracy of each of the theories. None of the three theories is vastly superior to the others. However, the report concludes by suggesting that a combination of the two newer theories would have the greatest generality and the highest empirical accuracy.
Resumo:
Planner is a formalism for proving theorems and manipulating models in a robot. The formalism is built out of a number of problem-solving primitives together with a hierarchical multiprocess backtrack control structure. Statements can be asserted and perhaps later withdrawn as the state of the world changes. Under BACKTRACK control structure, the hierarchy of activations of functions previously executed is maintained so that it is possible to revert to any previous state. Thus programs can easily manipulate elaborate hypothetical tentative states. In addition PLANNER uses multiprocessing so that there can be multiple loci of changes in state. Goals can be established and dismissed when they are satisfied. The deductive system of PLANNER is subordinate to the hierarchical control structure in order to maintain the desired degree of control. The use of a general-purpose matching language as the basis of the deductive system increases the flexibility of the system. Instead of explicitly naming procedures in calls, procedures can be invoked implicitly by patterns of what the procedure is supposed to accomplish. The language is being applied to solve problems faced by a robot, to write special purpose routines from goal oriented language, to express and prove properties of procedures, to abstract procedures from protocols of their actions, and as a semantic base for English.