18 resultados para Phenolic compounds


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kiwi fruit is a highly nutritional fruit due to the high level of vitamin C and its strong antioxidant capacity due to a wide number of phytonutrients including carotenoids, lutein, phenolics, flavonoids and chlorophyll [1]. Drying consists of a complex process in which simultaneous heat and mass transfer occur. Several alterations occur during the drying of foods at many levels (physical, chemical, nutritional or sensorial) which are influenced by a number of factors, including processing conditions [2]. Temperature is particularly important because of the effects it produces at the chemical and also at the physical level, particularly colour and texture [3]. In the present work were evaluated the changes in sliced kiwi when exposed to air drying at different temperatures (50, 60, 70, 80 ºC), namely in terms of some chemical properties like ascorbic acid or phenolic compounds, physical characteristics like colour and texture and also at the sensorial level. All experiments followed standard established procedures and several replicates were done to assess each property. The results obtained indicated that moisture was reduced with drying by 74 to 87%, depending on the temperature. Also ascorbic acid decreased with drying, being 7% for 50 ºC and increasing up to 28% for the highest temperature (80 ºC). The phenolic compounds and antioxidant activity were also very much affected by the drying temperature. The water activity of the dried samples varied from 0.658 to 0.753, being compatible with a good preservation. Regarding colour, the total colour difference between the dried samples and the fresh sample was found to vary in the range 9.45 – 17.17. The textural parameters were also much affected by drying, namely hardness which decreased by 45 to 72 %, and all other parameters increased: cohesiveness (approximately doubled), springiness (increased 2 to 3 times) and chewiness which increased up to 2.5 times that off the fresh sample. Adhesiveness, which was observed for the fresh samples (-4.02 N.s) disappeared in all the dried samples. The sensorial analysis made to the dried samples allowed establishing the sensorial profiles as shown in Figure 1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioactive compounds are extra nutritional constituents occurring naturally in plant foods in small amounts, however in quantities enough to produce bioactive effects. Among bioactive compounds the phenolic compounds are a very large set of molecules, which include several groups such as for example flavonoids, phenolic acids or tannins. Small fruits and berries include a wide diversity of fruits, like grapes, strawberries, blackberries, blueberries, raspberries, cherries, hardi kiwi, gooseberries, cranberries, currants (black, white, red), physalis, crowberries, açaí, elderberries, dates or goji berries, and these frequently have been reported as having particularly high concentrations of phenolic compounds with antioxidant activity. Hence, the objective of this chapter is to review the literature about the type and contents of different phenolic compounds present in small fruits and berries, as well as their bioactive properties, including antioxidant capacity. All the fruits and berries investigated in this chapter were particularly rich in bioactive compounds, including phenolic compounds that provide the fruits with high antioxidant properties. The most relevant health promoting effects include anti-cancer, anti-inflamatory, neuro protective, cardio protective or anti-diabetes, thus indicating that these foods are a valuable resource to prevent and treat diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Each grape variety has its own phenolic profile. However, the concentration of the phenolic compounds present in wine mainly dependson winemaking processes. Phenolic compounds influence wine sensorial characteristics namely taste or mouthfeel, bitterness, astringency and color. Humans can perceive six basic tastes: sweet, salty; sour; umami; fat-taste and bitter taste. This last basic taste is considered as a defense mechanism against the ingestion of potential poisons. Some of the genes,encoding G-protein-coupled receptors - TAS2Rs, which translate for these distinct bitter compounds detectors have been identified. Different phenolic compounds activate distinguished combination of TAS2Rs. Astringency in wine is primarily driven by proanthocyanidins, soluble protein-proanthocyanidins complexes which diminish the protective salivary film and bind to the salivary pellicle; insoluble protein-proanthocyanidins complex and proanthocyanidins are rejected against salivary film and trigger astringency sensation via increasing friction. Thus, the aim of this review is to expand the knowledge about the role of wine phenolic compounds in wine sensorial properties, namely in bitterness and astringency phenomenon’s.