Local edge detectors: A substrate for fine spatial vision at low temporal frequencies in rabbit retina


Autoria(s): van Wyk, Michiel; Taylor, Rowland W.; Vaney, David I.
Contribuinte(s)

David C. V. Essen

Data(s)

01/12/2006

Resumo

Visual acuity is limited by the size and density of the smallest retinal ganglion cells, which correspond to the midget ganglion cells in primate retina and the beta- ganglion cells in cat retina, both of which have concentric receptive fields that respond at either light- On or light- Off. In contrast, the smallest ganglion cells in the rabbit retina are the local edge detectors ( LEDs), which respond to spot illumination at both light- On and light- Off. However, the LEDs do not predominate in the rabbit retina and the question arises, what role do they play in fine spatial vision? We studied the morphology and physiology of LEDs in the isolated rabbit retina and examined how their response properties are shaped by the excitatory and inhibitory inputs. Although the LEDs comprise only similar to 15% of the ganglion cells, neighboring LEDs are separated by 30 - 40 mu m on the visual streak, which is sufficient to account for the grating acuity of the rabbit. The spatial and temporal receptive- field properties of LEDs are generated by distinct inhibitory mechanisms. The strong inhibitory surround acts presynaptically to suppress both the excitation and the inhibition elicited by center stimulation. The temporal properties, characterized by sluggish onset, sustained firing, and low bandwidth, are mediated by the temporal properties of the bipolar cells and by postsynaptic interactions between the excitatory and inhibitory inputs. We propose that the LEDs signal fine spatial detail during visual fixation, when high temporal frequencies are minimal.

Identificador

http://espace.library.uq.edu.au/view/UQ:82687/UQ82687_OA.pdf

http://espace.library.uq.edu.au/view/UQ:82687

Idioma(s)

eng

Publicador

Society for Neuroscience

Palavras-Chave #retinal ganglion cell #edge detection #rabbit retina #visual acuity #amacrine cell #inhibition #C1 #320705 Sensory Systems #730111 Hearing, vision, speech and their disorders
Tipo

Journal Article