Concentrations and isotopic compositions of low molecular weight hydrocarbons in hydrothermal fluids from ODP Field, Middle Valley, northern Juan de Fuca Ridge


Autoria(s): Cruse, Anna M; Seewald, Jeffrey S
Cobertura

MEDIAN LATITUDE: 48.431815 * MEDIAN LONGITUDE: -128.681415 * SOUTH-BOUND LATITUDE: 48.430520 * WEST-BOUND LONGITUDE: -128.681830 * NORTH-BOUND LATITUDE: 48.433110 * EAST-BOUND LONGITUDE: -128.681000 * DATE/TIME START: 1996-09-17T10:00:00 * DATE/TIME END: 1996-09-20T20:15:00

Data(s)

19/12/2006

Resumo

The presence of sedimentary organic matter blanketing midocean ridge crests has a potentially strong impact on metal transport in hydrothermal vent fluids. To constrain the role of organic matter in metal mobility during hydrothermal sediment alteration, we reacted organic-rich diatomaceous ooze from Guaymas Basin, Gulf of California, and organic-poor hemipelagic mud from Middle Valley, northern Juan de Fuca Ridge, with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity, at 275° to 400°C, 350 to 500 bars, and initial fluid: sediment mass ratios ranging from 1.6 to 9.8. Reaction of these fluids with both sediment types released CO2 and high concentrations of ore-forming metals (Fe, Mn, Zn, Pb) to solution. Relatively low concentrations of Cu were observed in solution and likely reflect the reducing conditions that resulted from the presence of sedimentary organic matter. Both the concentrations of CO2 and dissolved metals were lower in fluids reacted with Middle Valley sediment compared with aqueous concentrations in fluids reacted with Guaymas Basin sediment. During alteration of both sediment types, metal concentrations varied strongly as a function of temperature, increasing by up to an order of magnitude over the 75°C range of each experiment. Major element fluid chemistry and observed alteration assemblages suggest that during hydrothermal alteration of organic-lean sediment from Middle Valley a feldspar-quartz-illite mineral assemblage buffered in situ pH. In contrast, data from the experimental alteration of organic-rich Guaymas Basin sediment suggest that a calcite-plagioclase-quartz assemblage regulated in situ pH. Fluid speciation calculations suggest that in situ pH during Guaymas Basin sediment alteration was lower than during alteration of Middle Valley sediment and accounts for the substantially greater metal mobility at a given temperature and pressure during the former experiment. Comparison of our results with the results of basalt alteration experiments indicate that except for Cu, hydrothermal sediment alteration results in equal or greater concentrations of ore-forming metals at a given temperature and pressure. Accordingly, the presence of ore-forming metals in fluids currently venting from sediment-covered hydrothermal systems at concentrations substantially lower than in fluids from bare-rock systems may reflect chemical reequilibration during subsurface cooling within the sediment pile.

Formato

application/zip, 4 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.710861

doi:10.1594/PANGAEA.710861

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Cruse, Anna M; Seewald, Jeffrey S (2006): Geochemistry of low molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 70(8), 2073-2092, doi:10.1016/j.gca.2006.01.015

Palavras-Chave #[NH4]+; 169-1035F; 169-1035H; Ammonium; Benzene; C2H4; C2H6; C3H6; C3H8; C6H5CH3; C6H6; Calculated; Carbon dioxide, dissolved; CH4; Chloride; Cl-; CO2 diss; Comment; d13C; d13C C2H6; d13C C3H8; d13C CH4; d13C CO2 aq; Dead Dog vent field, North Pacific Ocean; delta 13C; delta 13C, carbon dioxide, aquatic; delta 13C, ethane; delta 13C, methane, atmospheric; delta 13C, propane; DRILL; Drilling/drill rig; error, 1 sigma; Ethane; Ethene; Event; Flow injection analysis; for benzene; for benzene, error, 1 sigma; for i-C4H10; for i-C4H10, error, 1 sigma; for n-C4H10; for n-C4H10, error, 1 sigma; for toluene; for toluene, error, 1 sigma; H2; Hydrogen; i-C4H10; Ion chromatography; Isobutane; Isotope ratio mass spectrometry; Joides Resolution; Label; Leg169; Magnesium; Methane; Mg; n-Butane; n-C4H10; Number of tests; Ocean Drilling Program; ODP; ODP sample designation; of benzene; of C2H6; of C3H8; of CH4; of CO2; of i-C4H10; of n-C4H10; of toluene; Propane; Propene; Proxy - benzene-toluene; Proxy - Cl. Temperature of two-phase boundary for seawater at 350 bar.; Proxy - CO2-CH4; Proxy - d13C, CO2-CH4. Based on assumed attainment of isotopic equilibrium.; Proxy - ethene-ethane; Proxy - propene-propane; Sample code/label; t; T cal; Temperature, calculated; Temperature, ice/snow; Tests; Toluene
Tipo

Dataset