The effects of sympatry on patterns of bill morphology between closely related species of birds, worldwide


Autoria(s): Kim, Stephanie Soun
Contribuinte(s)

Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))

Data(s)

24/06/2016

29/06/2016

29/06/2016

29/06/2016

Resumo

When closely related species co-occur in sympatry, they face a significant challenge. They must adapt to the same local conditions in their shared environment, which favours the convergent evolution of traits, while simultaneously minimizing the costs of competition for shared resources that typically favours the divergent evolution of traits. Here, we use a comparative sister lineage approach to test how most species have responded to these conflicting selection pressures in sympatry, focusing on a key ecological trait: the bill morphology of birds. If similar bill morphologies incur fitness costs due to species interactions, then we predicted that the bill morphologies of closely related species would differ more in sympatry compared with allopatry. Alternatively, if similar bill morphologies incur fitness benefits due to local adaptation, then we predicted that the bill morphologies would be more similar in sympatry compared with allopatry. We used museum specimens to measure five aspects of bill (maxilla) morphology – depth, length, width, side shape, and bottom shape – in diverse bird species from around the world to test our alternative hypotheses. We found support for both divergent evolution and convergent evolution (or trait retention) in one ecological trait: closely related sympatric species diverged in bill depth, but converged in side shape. These patterns of bill evolution were influenced by the genetic distance between closely related sister taxa and the geographic distance between allopatric lineages. Overall, our results highlight species interactions as an important mechanism for the evolution of some (bill depth), but not all (bill shape), aspects of bill morphology in closely related species in sympatry, and provide strong support for the bill as a key ecological trait that can adapt in different ways to the conflicting challenges of sympatry.

Thesis (Master, Biology) -- Queen's University, 2016-06-24 13:29:58.729

Identificador

http://hdl.handle.net/1974/14619

Idioma(s)

en

en

Relação

Canadian theses

Direitos

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada

ProQuest PhD and Master's Theses International Dissemination Agreement

Intellectual Property Guidelines at Queen's University

Copying and Preserving Your Thesis

Creative Commons - Attribution - CC BY

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Palavras-Chave #birds #sympatry #closely related species #bill morphology
Tipo

Thesis