Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples


Autoria(s): Kato, A; Hikami, Mana; Kumagai, Naoki H; Suzuki, Atsushi; Nojiri, Yukihiro; Sakai, Kazuhiko
Data(s)

14/07/2014

Resumo

We evaluated acidification effects on two crustose coralline algal species common to Pacific coral reefs, Lithophyllum kotschyanum and Hydrolithon samoense. We used genetically homogeneous samples of both species to eliminate misidentification of species. The growth rates and percent calcification of the walls of the epithallial cells (thallus surface cells) of both species decreased with increasing pCO2. However, elevated pCO2 more strongly inhibited the growth of L. kotschyanum versus H. samoense. The trend of decreasing percent calcification of the cell wall did not differ between these species, although intercellular calcification of the epithallial cells in L. kotschyanum was apparently reduced at elevated pCO2, a result that might indicate that there are differences in the solubility or density of the calcite skeletons of these two species. These results can provide knowledge fundamental to future studies of the physiological and genetic mechanisms that underlie the response of crustose coralline algae to environmental stresses.

Formato

text/tab-separated-values, 4980 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.833973

doi:10.1594/PANGAEA.833973

Idioma(s)

en

Publicador

PANGAEA

Relação

Lavigne, Héloise; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Kato, A; Hikami, Mana; Kumagai, Naoki H; Suzuki, Atsushi; Nojiri, Yukihiro; Sakai, Kazuhiko (2014): Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples. Marine Environmental Research, 94, 1-6, doi:10.1016/j.marenvres.2013.10.010

Palavras-Chave #algae; Alkalinity, total; Alkalinity, total, standard deviation; Aquarium number; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; laboratory; Mass change; morphology; North Pacific; Number of points; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Salinity; Species; Temperature, water; Temperature, water, standard deviation
Tipo

Dataset