Deep water formation in the North Pacific and deglacial CO2 rise


Autoria(s): Rae, James William B; Sarnthein, Michael; Foster, Gavin L; Ridgwell, Andy; Grootes, Pieter Meiert; Elliott, Tim
Cobertura

MEDIAN LATITUDE: 54.386500 * MEDIAN LONGITUDE: -148.842083 * SOUTH-BOUND LATITUDE: 54.365500 * WEST-BOUND LONGITUDE: -148.921300 * NORTH-BOUND LATITUDE: 54.390700 * EAST-BOUND LONGITUDE: -148.446000 * DATE/TIME START: 1992-09-09T00:00:00 * DATE/TIME END: 2002-05-23T00:00:00

Data(s)

23/06/2014

Resumo

Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric d13C and D14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in d15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data, and suggest that the regional pulse of export production observed during the Bølling-Allerød is promoted by relatively stratified conditions, with increased light availability and a shallow, potent nutricline. Overall, our work highlights the potential of NPDW formation to play a significant and hitherto unrealized role in deglacial climate change and CO2 rise.

Formato

application/zip, 7 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.833529

doi:10.1594/PANGAEA.833529

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Rae, James William B; Sarnthein, Michael; Foster, Gavin L; Ridgwell, Andy; Grootes, Pieter Meiert; Elliott, Tim (2014): Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography, 29(6), 645-667, doi:10.1002/2013PA002570

Palavras-Chave #1, d18O-tied age mod; 14C offset benthic-planktic; 14C offset benthic-planktic, 1 SE; 1 sigma; 2, Plateau-tuned age mod; 2 sd reproducibility; Age; AGE; Age, 14C; Age, 14C conventional; Age, comment; Age, dated; Age, difference; Age, difference error; Age, error; Age dated; Age diff; Age diff e; Age e; benthic; benthic, 1 SE; Calendar years; Cal yrs; Comm; Comment; d11B; d11B std dev; D14C; D14C std dev; d18O-tied age model; DD14C; delta 11B; delta 11B, standard deviation; Delta 14C; Delta 14C, standard deviation; Delta Delta 14C; Depth; DEPTH, sediment/rock; Difference in D14C between foraminifera and the contemporaneous atmosphere, d18O-tied age model; Difference in radiocarbon age between foraminifera and the contemporaneous atmosphere, d18O-tied age model; ID; Identification; Lab label; Laboratory code/label; Multi-collector inductively coupled plasma - mass spectrometer (MC-ICP-MS); planktic - either from same interval as benthic or linear interpolation between 2 closely spaced samples; Plateau-tuned age mod; plateau-tuned age model; R = 14C, T = tie-point; Reference; Reference/source; Res age; Reservoir age
Tipo

Dataset