Bioremediation of PAHs - Limitations and soultions


Autoria(s): Castaldini, Francesca
Contribuinte(s)

Fava, Fabio

Data(s)

20/03/2008

Resumo

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Formato

application/pdf

Identificador

http://amslaurea.unibo.it/130/1/Tesi.pdf

Castaldini, Francesca (2008) Bioremediation of PAHs - Limitations and soultions. [Laurea specialistica], Università di Bologna, Corso di Studio in Ingegneria per l'ambiente e il territorio [LS-DM509] <http://amslaurea.unibo.it/view/cds/CDS0450/>

Relação

http://amslaurea.unibo.it/130/

References • Ahn, Y., J. Sanseverino, and G. S. Sayler. 1999. Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils.Biodegradation 10:149–157. • Aislabie, J., S. Rothenburger, and R.M. Atlas, Isolation of microorganisms capable of degrading isoquinoline under aerobic conditions. Applied and Environmental Microbiology, 1989. 55: p. 3247-3249. • Alef, K., Kapitzki, L., Fuchs, M., Wilke, B.-M., Stegmann, R.,Niebelschu¨ tz, H., 2003. Bestimmung von Polzyklischen Aromatischen Kohlenwasserstoffen (PAK) in Boden/Pflanzenol extrakten. Altlasten spektrum 1, 35–39 (in German).ù • Alexander, M. and Scow, K. M., 1989, Kinetics of Biodegradation in Soil, Soil Science Society of America Special Symposium Publication 22: Reaction and Movement of Organic Chemicals in Soils, Soil Science Society of America, Madison, WI, p. 243-269. • Alexander, M. 2000. Biodegradation and bioremediation. Academic Press Inc., San Diego, Calif • Anders R. Johnsena, Lukas Y. Wickb, Hauke Harms, Principles of microbial PAH-degradation in soil, Switzerland April 2004 • Arienzo, M., 2000. Degradation of 2,4,6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound. Chemosphere 40, 331–337. • Ashok, B.T., 1995, Biodegradation of Polycyclic Aromatic Hydrocarbons- a Review, J. Sci. Ind. Res., 54: 443-451. • ATSDR, 1993, Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs) Draft Update, U.S. Dept. Health & Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, p. 273. • Bailey, J. E. and Ollis, D. F., 1977, Biochemical Engineering Fundamentals, McGraw-Hill, Toronto, p. 335-341 • Bailey, J. E. and Ollis, D. F., 1986, Biochemical Engineering Fundamental, 2nd ed. McGraw- Hill, Toronto, p. 382-388. • Badr, T., Hanna, K., de Brauer, C., 2004. Enhanced solubilization and removal of Naphthalene and Phenanthrene by cyclodextrins from two contaminated soils. J. Hazard. Mater. 112 (3), 215-223. • Badr, T., Hanna, K., de Brauer, C., 2004. Enhanced solubilization and removal of Naphthalene and Phenanthrene by cyclodextrins from two contaminated soils. J. Hazard. Mater. 112 (3), 215-223. • Bai, G., Brusseau, M.L., Miller, R.M., 1997. Biosurfactant-enhanced removal of residual hydrocarbon from soil. J. Contam. Hydrol. 25, 157-170. • Ball, W. and P R., 1991, Long-Term Sorption of Halogenated Organic Chemicals by Aquifer Material, 2. Intraparticle Diffusion, Environ. Sci. Technol., 25: 1237-1249. • Ball, W.P., Roberts, P.V., 1991. Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion. Environmental Science and Technology 25, 1237–1249. • Banerjee, D. K., P. M. Fedorak, A. Hashimoto, J. H. Masliyah, M. A. Pickard, and M. R. Gray. 1995. Monitoring the biological treatment of Anthracene-contaminated soil in a rotating-drum bioreactor. Appl. Microbiol.Biotechnol. 43:521–528. • Bardi, L., Mattei, A., Steffan, S., Marzona, M., 2000. Hydrocarbon degradation by a soil microbial population with b-cyclodextrin as surfactant to enhance bioavailability. Enzyme Microb. Technol. 27, 709-713. • Barkay, T., S. Navon-Venezia, E. Z. Ron, and E. Rosenberg. 1999. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl. Environ. Microbiol. 65:2697–2702. • Barnsley, E. A. 1975. The bacterial degradation of Fluoranthene and Benzo[a]Pyrene. Can. J. Microbiol. 21:1004–1008.5. • Bauer, J.E., and Capone, D.G. (1988). “Effects of co-occurring aromatic hydrocarbons on degradation of individual aromatic hydrocarbons in marine sediment slurries.” Appl. Environ. Microbiol., 54, 1649-1655. • Bayard, R., Barna, L., Mahjoub, B., Gourdon, R., 2000. Influence of the presence of PAHs and coal tar on Naphthalene sorption in soils. J. Contam. Hydrol. 46, 61-80. • Becher, P., 1965. Emulsions, Theory and Practice, second ed. Reinhold Publishing, New York. • Beckles, D.M., Ward, C.H., Hughes, J.B. (1998). “Effects of mixtures of PAHs and sediments on Fluoranthene biodegradation patterns.” Environ. Toxicol. Chem., 17, 1246-1251. • Bhatnagar, L., and Fathepure, B. 1991. Mixed cultures in detoxification of hazardous waste. In Mixed cultures in biotechnology. Edited by J.G. Zeikus and E.A. Johnson. McGraw–Hill Inc., New York. pp. 293–340. • Bielefeldt, A.R., and Stensel, H.D. (1999). “Evaluation of biodegradation kinetic testing methods and long term variability in biokinetics for BTEX metabolism.” Wat. Res., 33, 733-740. • Blanch, H. W. and Clark, D. S., 1997, Biochemical Engineering, Marcel Dekker, Inc., Hong Kong • Blyshak, L.A., Warner, I.M., Partonay, G., 1990. Evidence for noninclusional association between a-cyclodextrin and polynuclear aromatic hydrocarbons. Anal. Chim. Acta 232, 239-243. • Blumer, M. 1976. Polycyclic aromatic hydrocarbons in nature. Sci. Am. 234: 35–45. • Böhmer, S., Messner, K., Srebotnik, E., 1998. Oxidation of Phenanthrene by a fungal laccase in the presence of 1- hydroxybenzotriazole and unsaturated lipids. Biochemical and Biophysical Research Communications 244, 233–238. • Bogan, B.W., Lamar, R.T., 1995. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Applied and Environmental Microbiology 61, 2631–2635. • Bogan, B.W., Lamar, R.T., 1999. Surfactant enhancement of white-rot fungal PAH soil remediation. In: Leeson, A., Alleman, B.C. (Eds.), Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds. Battelle Press, Columbus. • Boldrin, B., A. Tiehm, and C. Fritzsche. 1993. Degradation of Phenanthrene, Fluorene, Fluoranthene, and Pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 59:1927–1930. • Boonchan, S., Britz, M.L., Stanley, G.A., 2000. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal bacterial cocultures. Appl. Environ. Microbiol. 66, 107-1019 • Bos, R. P., J. L. G. Theuws, C.-M. Leijdekkers, and P. T. Henderson. 1984. The presence of the mutagenic polycyclic aromatic hydrocarbons benzo-[a]Pyrene and Benzo[a]Anthracene in creosote • Bosma, T. N. P., Middeldrop, P. J. M., Schraa, G., and Zehnder, A. J. B., 1997, Mass Transfer Limitation of Biotransformation: Quantifying Bioavailability, Environ. Sci. Technol., 31: 248-252. • Bossert, I. D., and R. Bartha. 1986. Structure biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bull. Environ. Contam. Toxicol. 37:490–495. • Bouchez, M., D. Blanchet, and V.-P. Vandecasteele. 1995. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl. Microbiol. Biotechnol. 43:156–164. • Bouchez, M., D. Blanchet, and V.-P. Vandecasteele. 1996. The microbiological fate of polycyclic aromatic hydrocarbons: carbon and oxygen balances for bacterial degradation of model compounds. Appl. Microbiol. Biotechnol. 45:556–561. • Bouchez, M., Blanchet, D., Bardin, V., Haeseler, F., Vandecasteele, J.-P., 1999. Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation 10, 429-435. • Bouchez-Naïtali, M., Blanchet, D., Bardin, V., Vandecasteele, J.-P., 2001. Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 147, 2537-2543. • Bouchez-Naïtali, M., Rakatozafy, H., Marchal, R., Leveau, J.-Y., and Vandecasteele, J.-P. 1999. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J. Appl. Microbiol. 86: 421–428. • Boving, T.B., Brusseau, M.L., 2000. Solubilization and removal of residual trichloroethene from porous media: comparison of several solubilization agents. J. Contam. Hydrol. 42, 51-67. • Boxall, A. B. A., and L. Maltby. 1997. The effects of motorway runoff on reshwater ecosystems. 3. Toxicant confirmation. Arch. Environ. Contam Toxicol. 33:9–16 • Boyd, D. R., N. D. Sharma, F. Hempenstall, M. A. Kennedy, J. F. Malone, C. C. R. Allen, S. M. Resnick, and D. T. Gibson. 1999. bis-cis-Dihydrodiols: a new class of metabolites from biphenyl dioxygenase-catalyzed sequential asymmetric cis-dihydroxylation of polycyclic arenes and heteroarenes. J. Org. Chem. 64:4005–4011. • Bragato, M., El Seoud, O.A., 2003. Formation, properties, and ex situ soil decontamination by vegetable oil-based microemulsions. J. Surfactants Deterg. 6, 143–150. • Brinkmann, D., Rohrs, J. and Schugerl, K., 1998, Bioremediation of Diesel Fuel Contaminated Soil in a Rotating Bioreactor, Influence of Oxygen Saturation, Chem. Eng. Technol. 21: 168-172. • Brusseau, M.L., Wang, X., Hu, Q., 1994. Enhanced transport of low polarity organic compounds through soil by cyclodextrin. Environ. Sci. Technol. 28, 952-956. • Brusseau, M.L., Jessup, R.E., Rao, P.S.C., 1991. Nonequilibrium sorption of organic chemicals: elucidation of ratelimiting processes. Environmental Science and Technology 25, 134–142. • Burd, G., Ward, O.P., 1996. Bacterial degradation of polycyclic aromatic hydrocarbons on agar plates: the role of biosurfactants. Biotechnology Techniques 10, 371–374. • Caldini, G., G. Cenci, R. Manenti, and G. Morozzi. 1995. The ability of an environmental isolate of Pseudomonas fluorescens to utilize Chrysene and other four-ring polynuclear aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 44:225–229. • Carberry, J. J., 1976, Chemical and Catalytic Reaction Engineering, McGraw-Hill, New York, NY, p. 52. • Carmichael, L. M., and F. K. Pfaender. 1997. Polynuclear aromatic hydrocarbon metabolism in soils: relationship to soil characteristics and preexposure. Environ. Toxicol. Chem. 16:666–675. • Casellas M, Grifoll M, Bayona JM, Solanas AM (1997) New metabolites in the degradation of Fluorene by Arthrobacter sp strain F101. Appl.Environ.Microbiol. 63: 819- 826. • Cenci, G., and G. Caldini. 1997. Catechol dioxygenase expression in a Pseudomonas fluorescens strain exposed to different aromatic compounds. Appl. Microbiol. Biotechnol. 47:306–308. • CEPA, 1994, Priority Substances List Assessment Report Polycyclic Aromatic Hydrocarbons, Government of Canada. • Cerniglia, C. E. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30:31–71. • Cerniglia, C. E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368 • Cerniglia, C. E., and M. A. Heitkamp. 1989. Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, p. 41–68. In U. Varanasi (ed.), Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Inc., Boca Raton, Fla. • Cerniglia, C. E., and M. A. Heitkamp. 1990. Polycyclic aromatic hydrocarbon degradation by Mycobacterium. Methods Enzymol. 188:148–153. • Cerniglia, C.E. (1993). “Biodegradation of PAHs.” Curr. Opin. Biotechnol., 4, 331-338. • Chatain, V., Hanna, K., de Brauer, C., Bayard, R., Germain, P., 2004. Enhanced solubilization of arsenic and 2,3,4,6 tetrachlorophenol from soils by a cyclodextrin derivative. Chemosphere 57 (3), 197-206. • Chaudry, G.R. and A.N. Ali, Bacterial metabolism of carbofuran. Appl. Environ. Microbiol., 1988. 54: p. 1414-1419. • Chen, C.T., Tafuri, A., Rahman, M., Foerst, M.B., Coates, W., Pfetzing, E., Taylor, M., 1995. Chemical oxidation treatment of hydrocarbon contaminated soil using Fenton_s reagent. In: Tedder, D.W. (Ed.), Emerging Technologies in Hazardous Waste Management VII. American Chemical Society, Washington, DC, pp. 1095–1098. • Chiou, C.T., Porter, P.E., Schmedding, D.W., 1983. Partition equilibria of nonionic organic compounds between soil organic matter and water. Environmental Science and Technology 17, 227–231. • Chiou, C.T., McGroddy, S.E., Kile, D.E., 1998. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science and Technology 32, 264–269. • Churchill, S. A., J. P. Harper, and P. F. Churchill. 1999. Isolation and characterization of a Mycobacterium species capable of degrading threeand four-ring aromatic and aliphatic hydrocarbons. Appl. Environ. Microbiol. 65:549–552. • Clements, W. H., J. T. Oris, and T. E. Wissing. 1994. Accumulation and food chain transfer of Fluoranthene and Benzo[a]Pyrene in Chironomus riparius and Lepomis macrochirus. Arch. Environ. Contam. Toxicol. 26:261–266. • Coates, J. D., J. Woodward, J. Allen, P. Philp, and D. R. Lovley. 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63:3589–3593. • Cornelissen, G., Rigterink, H., Ferdinandy, M.M.A., Noort van, P.C.M., 1998. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ. Sci. Technol. 32, 966–970. • Cussler, E. L., 1997, Diffusion Mass Transfer in Fluid Systems, 2nd ed. University of Cambridge Press, p.580. • Danielsson, A., 2000, Rate-Limiting Factors During Bioremediation of Soil Containing HOCs, State of the Art Report Prepared for the Board of COLDREM, Chemical Engineering II, Lund Institute of Technology, Lund, Sweden, p.1-24. • Da Silva, M., Cerniglia, C. E., Pothuluri, J. V., Canhos, V. P. and Espoisto, E., 2003, Screening Filamentous Fungi Isolated From Estuarine Sediments for Ability to Oxidize Polycyclic Aromatic Hydrocarbons, World J. Microbiol. Biotechnol. 19: 399-405. • Dean-Ross, D., and C. E. Cerniglia. 1996. Degradation of Pyrene by Mycobacterium flavescens. Appl. Microbiol. Biotechnol. 46:307–312. • Dean, S.M., Jin, Y., Cha, D.K., Wilson, S.V., Radosevich, M., 2001. Phenanthrene degradation in soils co-inoculated with Phenanthrene- degrading and biosurfactant-producing bacteria. Journal of Environmental Quality 30, 1126–1133. • De Jonge, R.J., Breure, A.M., and van Andel, J.G. 1996. Bioregeneration of powdered activated carbon (PAC) loaded with aromatic compounds. Water Res. 30: 875–882. • Desai, J.D., and Banat, I.M. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47–64. • Deschȇnes, L., P. Lafrance, J.-P. Villeneuve, and R. Samson. 1996. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl. Microbiol. Biotechnol. 46:638–646. • Dimitriou-Christidis, P. (2005). “Modeling the biodegradability and physicochemical properties of PAHs”. Ph.D. Dissertation. Texas A&M University, College Station, TX. • Dolfing, J. and J.M. Tiedje, Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch. Microbiol., 1987. 149: p. 102-105. • Dunn, B. P. and Stich, H. F., 1975, The Use of Mussels in Estimating Benzo[a]Pyrene Contamination of the Marine Environment, Proc. Soc. Expt. Biol. Med. 150:49-51. • Edwards, N. T. 1983. Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment—a review. J. Environ. Qual. 12:427–441. • Efroymson, R.A., and Alexander, M. 1991. Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl. Environ. Microbiol. 57: 1441–1447. • Egli, T., 1995. The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv. Microb. Ecol. 14, 305-386. • Egli, T., 2002. Microbial degradation of pollutants at low concentrations and in the presence of alternative carbon substrates: emerging patterns. In: Agathos, S.N., Reineke, W. (Eds.), Focus on Biotechnology. Biotechnology for the Environment: Strategy and Fundamentals, vol. 3A. Kluwer Academic Publishers, Dordrecht,pp. 131-139. • Egli, C., et al., Transformation of tetra- and trichloromethane to CO2 by anaerobic bacteria is a non-enzymic process. FEMS Microbiology Letters , 1990. 68: p. 207-212. • Eisler, R., 1987, Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, United States Fish and Wild Service, Patuxent Wildlife Research Center, Laurel, MD. • Eisler, R., 1987b, Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, U.S. Fish and Wild Service, Biol. Rep. 85 (1.11). • Erickson, D., Loehr, R. and Neuhauser, E., 1993, PAH Loss during Bioremediation of Manufactured-Gas Plant Site Soils, Water Res., 27: 911-919 • Fabacher, D. L., Besser, J. M. Schmitt, C. J., Harshbarger, J. C., Peterman, P. H. and Lebo J. A., 1991, Contaminated Sediments from Tributaries of the Great Lakes: Chemical Characterization and Cancer-Causing Effects in Medaka (Oryzias latipes). Arch. Environ. Contam. Toxicol., 20: 17-35. • Foght, J. M., and D. W. S. Westlake. 1988. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can. J. Microbiol. 34:1135–1141. • Fredrickson, J. K., Balkwill, D. L., Drake, G. R., Romine, M. F., Ringelberg, D. B. and White, D. C., 1995, Aromatic-Degrading Sphingomonas Isolates from the Deep Subsurface, Appl. Environ. Microbiol. 61: 1917-1922. • Fredrickson J. K., Balkwill D. L., Romine M. F., Shi T., 1999, Ecology, Physiology and Phylogeny of Deep Subsurface Sphingomonas sp., J. Ind. Microbiol. Biotechnol., 23: 273-283. • Fritzsche, C. 1994. Degradation of Pyrene at low defined oxygen concentrations by a Mycobacterium sp. Appl. Environ. Microbiol. 60:1687–1689. • Garcia-Junco, M., De Olmedo, E., Ortego-Calvo, J.-J., 2001. Bioavailability of solid and non-aqueous phase liquid-dissolved Phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Environmental Microbiology 3, 561–569. • Geiselbrecht, A. D., B. P. Hedlund, M. A. Tichi, and J. T. Staley. 1998. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl. Environ. Microbiol. 64:4703–4710. • Ghoshal, S. and Luthy, R. G., 1996, Bioavailability of Hydrophobic Organic Compounds from Nonaqueous-Phase Liquids: the Biodegradation of Naphthalene from Coal Tar. Environ. Toxicol. Chem., 15 (11): 1894-1900. • Ghoshal, S. and Luthy, R. G., 1998, Biodegradation Kinetics of Naphthalene in Nonaqueous Phase Liquid-Water Mixed Batch Systems: Comparison of Model Predictions and Experimental Results. Biotechnol. Bioeng., 57 (3): 356-366. • Ghoshal, S., Ramaswami, A. and Luthy, R. G., 1996, Biodegradation of Naphthalene from Coal Tar and Heptamethylnonane in Mixed Batch Systems. Environ. Sci. Technol. 30: 1282-1291. • Gibson, D. T. 1999. Beijerinckia sp. strain B1: a strain by any other name. J. Ind. Microbiol. Biotechnol. 23:284–293. • Gibson, D. T., and V. Subramanian. 1984. Microbial degradation of aromatic chydrocarbons, p. 181–252. In D. T. Gibson (ed.), Microbial degradation of organic compounds. Marcel Dekker, Inc., New York, N.Y. • Gibson, D. T., M. Venkatanayarana, D. M. Jerina, H. Yagi, and H. Yeh. 1975. Oxidation of the carcinogens Benzo[a]Pyrene and Benzo[a]Anthracene to dihydrodiols by a bacterium. Science 189:295–297. • Gong, Z., Alef, K., Wilke, B.-M., Li, P., 2005. Dissolution and removal of PAHs from contaminated soils using sunflower oil. Chemosphere 58, 291–298. • Gong, Wilke, Alef, Li, Zhou, Removal of polycyclic aromatic hydrocarbons from manufactured gas plant-contaminated soils using sunflower oil: Laboratory column experiments, China and Germany, 2005. • Goodin, J. D., and M. D. Webber. 1995. Persistence and fate of Anthracene and Benzo[a]Pyrene in municipal sludge treated soil. J. Environ. Qual. 24: 271–278. • Govindaswami, M., D. J. Feldhake, B. K. Kinkle, D. P. Mindell, and J. C. Loper. 1995. Phylogenetic comparison of two polycyclic aromatic hydrocarbon-degrading mycobacteria. Appl. Environ. Microbiol. 61:3221–3226 • Gray, M. R., Banerjee, D. K., Fedorak, P. M., Hashimoto, A., Masliyah, J. H. and Pickard, M. A., 1994, Biological Remediation of Anthracene Contaminated Soil in Rotating Bioreactors, Appl. Microbiol. Biotechnol. 40: 933-940. • Grady, C.P.L., Smets, B.F., Barbeau, D.S. (1996). “Variability in kinetic parameter estimates: A review of possible causes and a proposed terminology.” Wat. Res., 30, 742-748. • Grimberg, S.J., Nagel, J., Aitken, M.D., 1995. Kinetics of Phenanthrene dissolution into water in the presence of nonionic surfactants. Environmental Science and Technology 29, 1480–1487. • Grosser, R. J., D. Warshawsky, and J. R. Vestal. 1991. Indigenous and enhanced mineralization of Pyrene, Benzo[a]Pyrene, and carbazole in soils. Appl. Environ. Microbiol. 57:3462–3469. • Guerin, W. F. and Boyd, S. A., 1992, Bioavailability of Naphthalene Associated with Natural and Synthetic Sorbents, Water Res., 31(6): 1504-1512. • Guerin, W. F. and Boyd, S. A., 1992, Differential Bioavailability of Soil-Sorbed Naphthalene to Two Bacterial Species, Appl. Environ. Microbiol., 58: 1142-1152. • Guha, S., Peters, C.A., Jaffé, P.R. (1999). “Multisubstrate biodegradation kinetics of Naphthalene, Phenanthrene, and Pyrene mixtures.” Biotech. Bioengr., 65, 491- 499. • Gundel, J., C. Mannschreck, K. Bu¨ttner, U. Ewers, and J. Angerer. 1996.Urinary levels of 1-hydroxyPyrene, 1-, 2-, 3-, and 4-hydroxyPhenanthrene in females living in an industrial area of Germany. Arch. Environ. Contam.Toxicol. 31:585–590 • Haegel, F.-H., Clemens, W., Schwuger, M., Soeder, C.-J., Stickdorn, K., Webb, L., 1998. Process and plant for decontaminating solid materials contaminated with organic pollutants. US Patent #5,833,756. • Hall, M., and P. L. Grover. 1990. Polycyclic aromatic hydrocarbons: metabolism, activation, and tumor initiation, p. 327–372. In C. S. Cooper and P. L. Grover (ed.), Chemical carcinogenesis and mutagenesis. I. Handbook of experimental pharmacology, vol. 94/I. Springer Verlag, New York, N.Y. • Hamaker, J. W., 1972, Decomposition: Quantitative Aspects, In Goring, C.A.I. and Hamaker, J. W. (ed.) Organic Chemicals in the Soil Environment. Marcel Dekker, New York, p. 153-240, • Hamann, C., J. Hegemann, and A. Hildebrandt. 1999. Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett. 173:255–263. • Hanna, K., de Brauer, C., Germain, P., Chovelon, J.M., Ferronato, C., 2004. Degradation of pentachlorophenol in cyclodextrin extraction effluent using photocatalytic process. Sci. Total Environ. 332, 51-60. • Harms, H., Bosma, T.N.P., 1997. Mass transfer limitation of microbial growth and pollutant degradation. J. Indust. Microbiol. 18, 97-105. • Harvey, R. G. 1997. Polycyclic aromatic hydrocarbons. Wiley-VCH, New York, N.Y. • Hatzinger, P. B. and Alexander, M., 1995, Effect of Aging of Chemicals in Soil on their Biodegradability and Extractability, Environ. Sci. Technol., 29: 537-545. • Heitkamp, M. A., and C. E. Cerniglia. 1987. The effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystems. Environ. Toxicol. Chem. 6:535–546. • Heitkamp, M. A., and C. E. Cerniglia. 1988. Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54:1612–1614. • Heitkamp, M. A., and C. E. Cerniglia. 1989. Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl. Environ. Microbiol. 55:1968–1973. • Heitkamp, M. A., W. Franklin, and C. E. Cerniglia. 1988. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a Pyrene-degrading bacterium. Appl. Environ. Microbiol. 54:2549– 2555. • Heitkamp, M. A., J. P. Freeman, D. W. Miller, and C. E. Cerniglia. 1988. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 54:2556–2565. • Herbs, S.E. 1981. Rates of microbial transformation of polycyclic aromatic hydrocarbons in water and sediments in the vicinity of coal-coking wastewater discharge. Appl. Environ. Microbiol. 41: 20–28. • Herbes, S. E., and L. R. Schwall. 1978. Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl. Environ. Microbiol. 35:306–316. • Hixson, A. W. and Sidney, J. B., 1941, Mass Transfer Coefficients in Liquid Solid Agitation System. Ind. Eng. Chem. 33: 478-485. • Ho, Y., Jackson, M., Yang, Y., Mueller, J.G., Pritchard, P.H. (2000). “Characterization of Fluoranthene- and Pyrene-degrading bacteria isolated from PAH- contaminated soils and sediments.” J. Ind. Microbiol. Biotechnol., 24, 100-112. • Holden, J., 1989. How to select hazardous waste treatment technologies for soils and sludges. Pollution Technology Review 163 Noyes Data Corp., Park Ridge, N.J. • Holliger, C., et al., A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Applied and Environmental Microbiology, 1993. 59(9): p. 2991-2997. • Holman, H.-Y. N., Y. W. Tsang, and W. R. Holman. 1999. Mineralization of sparsely water-soluble polycyclic aromatic hydrocarbons in a water table fluctuation zone. Environ. Sci. Technol. 33:1819–1824. • Howsawkeng, J., Watts, R.J., Washington, D.L., Teel, A.L., Hess, T.F., Crawford, R.L., 2001. Evidence for simultaneous abiotic–biotic oxidations in a microbial-Fenton_s system. Environmental Science and Technology 35, 2961– 2966. • Huntley, S. L., N. L. Bonnevie, R. J. Wenning, and H. Bedbury. 1993. Distribution of polycyclic aromatic hydrocarbons (PAHs) in three northern New Jersey waterways. Bull. Environ. Contam. Toxicol. 51:865–872. • International Agency for Research on Cancer. 1972–1990. Monographs on the evaluation of carcinogenic risks to humans, vol. 1–49. International • Isosaari, P., Tuhkanen, T., Vartiainen, T., 2001. Use of olive oil for soil extraction and ultraviolet degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science and Technology 35, 1259–1265. • Jannik Lund Olsen, 2007, Changes in the act on soil contamination, and a new method for quantifying the non accessible fraction of PAH´s in soil, NERI, Roskilde University, Holland. • Janikowski, T. B. Velicogna, D., Punt, M. and Daugulis, A. J., 2002, Use of a Two-Phase Partitioning Bioreactor for Degrading Polycyclic Aromatic Hydrocarbons by Sphingomonas sp., Appl. Microbiol. Biotechnol. 59:368-376. • Jauhari, R., Gray, M. R. and Holloway, G., 1999, Growth of Rhizobium leguminosarum on Peat in Rotating Bioreactors, Can. J. Chem. Eng., 77: 911-916. • Jimenez, I., and R. Bartha. 1996. Solvent-augmented mineralization of Pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 62:2311–2316. • Johnsen, Wick, Harms, Principles of microbial PAH-degradation in soil, Denmark and Switzerland, 2004 • Johnsen, A.R., Wick, L.Y., Harms, H., 2005. Principles of microbial PAH-degradation in soil. Environ. Pollut. 133 (1), 71-84. • Johnson, W.P., Amy, G.L., Chapra, S.C., 1995. Modeling of NOM-facilitated PAH transport through low-foc sediment. J. Environ. Eng. ASCE 121, 438–446. • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J.Bacteriol. 182: 2059-2067. • Keck, J., Sims, R.C., Coover, M., 1989. Evidence for cooxidation of polynuclear aromatic hydrocarbons in soil. Water Res. 23, 1467-1476. • Keith, L.H., Telliard, W.A., 1979. Priority pollutants. I. A perspective view. Environmental Science and Technology13, 416–423. • Kelley, I., and Cerniglia, C.E. (1995). “Degradation of a mixture of high-molecularweight polycyclic aromatic hydrocarbons by a Mycobacterium strain PYR-1.” Journal of Soil Contamination, 4, 77-91. • Kelley I, Freeman JP, Evans FE, Cerniglia CE (1993) Identification of metabolites from the degradation of Fluoranthene by Mycobacterium sp strain Pyr-1. Appl.Environ.Microbiol. 59: 800-806. • Kishore, G.M. and G.S. Jacob, Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. J. Biol. Chem., 1987. 262: p. 12164-12168. • Klevens, H.B., 1950. Solubilization of polycyclic hydrocarbons. Journal of Physical and Colloid Chemistry 54, 283–298. • Ko, S.O., Schlautman, M.A., Carraway, E.R., 1999. Partitioning of hydrophobic organic compounds to hydroxypropyl-b-cyclodextrin: experimental studies and model predictions for surfactantenhanced remediation applications. Environ. Sci. Technol. 33, 2765- 2770. • Koch, A.L., 1990. Diffusiondthe crucial process in many aspects of the biology of bacteria. Adv. Microb. Ecol. 11, 37-69. • Kohler, H.-P.E., D. Kohler-Staub, and D.D. Focht, Cometabolism of polychlorinated biphenyls: Enhanced transformation of Aroclor 1254 by growing bacterial cells. Appl. Environ. Microbiol., 1988. 54: p. 1940-1945. • Kohler-Staub, D., et al., Evidence for identical dichloromethane dehalogenases in different met hylotrophic bacteria. Jour. Gen. Microbiol., 1986. 132: p. 2837-2843. • Kong, S.-H., Watts, R.J., Choi, J.-H., 1998. Treatment of petroleum-contaminated soil using mineral catalyzed hydrogen peroxide. Chemosphere 37, 1473–1482. • Kopinke, F.-D., Georgi, A., Mackenzie, K., 2001. Sorption of Pyrene to dissolved humic substances and related model polymers. 1. Structure–property correlation. Environmental Science and Technology 35, 2536–2542 • Kovárová-Kovar, K., and Egli, T. (1998). “Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics.” Microbiology and Molecular Biology Reviews, 62, 646-666. • Knightes, C.D., and Peters, C.A. (2000). “Aqueous phase biodegradation kinetics of 10 PAH compounds.” Environ. Eng. Sci., 20, 207-217. • Krauss, I.J., Wilcke, W., 2001. Predicting soilewater partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls by desorption with methanolewater mixtures at different temperaturesHarayama, S. 1997. Polycyclic aromatic hydrocarbon bioremediation design. Curr. Opin. Biotechnol. 8:268–273. • Kunz, D.A. and O. Nagappan, Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764. Applied and Environmental Microbiology, 1989. 55: p. 256- 258. • Lane, W.F., Loehr, R.C., 1992. Estimating the equilibrium aqueous concentrations of polynuclear aromatic hydrocarbons in complex mixtures. Environ. Sci. Technol. 26, 983-990. • Lane, W.F., Loehr, R.C., 1995. Predicting aqueous concentrations of polynuclear aromatic hydrocarbons in complex mixture. Water Resour. Res. 67 (2), 169- 173. • Lang, S., and Wullbrandt, D. 1999. Rhamnose lipids-biosynthesis: microbial production and application potential. Appl. Microbiol. Biotechnol. 51: 22–32. • Lee, J. M., 1992, Biochemical Engineering, Prentice Hall, Englewood Cliffs, New Jersey, p.145-146. • Lee, L.S., Suresh, P., Rao, C., Okuda, I., 1992. Equilibrium partitioning of polycyclic aromatic hydrocarbons from coal tar into water. Environ. Sci. Technol. 26, 2110 -2115. • Lee, B.-D., Hosomi, M., 2001. A hybrid Fenton oxidationmicrobial treatment for soil highly contaminated with Benzo[a]Anthracene. Chemosphere 43, 1127–1132. • Lerbs, W., M. Stock, and B. Parthier, Physiological aspects of glyphosate degradation in Alcaligenes spec. strain GL. Arch. Microbiol., 1990. 153: p. 146-150. • Levenspiel, O., 1972, Chemical Reaction Engineering (2nd ed.), New York, NY: John Wiley &Sons, p. 150. • Li, Z.M., Shea, P.J., Comfort, S.D., 1997. Fenton oxidation of 2,4,6-trinitrotoluene in contaminated soil slurries. Environmental Engineering Science 14, 55–66. • Lipczynska-Kochany, E., 1992. Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: photolysis in the presence of hydrogen peroxide versus the Fenton reaction. Chemosphere 24, 1369–1380. • Lou, J.C., Lee, S.S., 1995. Chemical oxidation of BTX using Fenton’s reagent. Hazardous Waste and Hazardous Materials 12, 185–193. • Luning Prak, D.J., and Pritchard, P.H. (2002). “Degradation of PAHs dissolved in Tween 80 surfactant solutions by Sphingomonas paucimobilis EPA505.” Can. J. Microbiol., 48, 151-158. • Luthy, R., 1994, Remediating Tar-Contaminated Soils at Manufactured-Gas Plant Sites, Environ. Sci. Technol., 28:A266-A276. • Luthy, R., 1997, Sequestration of Hydrophobic Organic Contaminants by Geosorbents, Environ. Sci. Technol., 31:3341-3347 • Mackay, D., Shiu, W. Y. and Ma, K.C., 1992, Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, V. II. Lewis, Boca Raton • Majhoub, B., Jayr, E., Bayard, R., Gourdon, R., 2000. Phase partition of organic pollutants between coal tar and water under variable experimental conditions. Water Res. 34, 3551-3560. • Magee, B.R., Lion, L.W., Lemley, A.T., 1991. Transport of dissolved organic macromolecules and their effect on the transport of Phenanthrene in porous media. Environ. Sci. Technol. 25, 323–331. • Magleod, C.J.A., Semple, K.T., 2000. Influence of contact time on extractability and degradation of Pyrene in soils. Environ. Sci. Technol. 34, 4952–4957. • Maier, R. M., 2000, Bioavailability and Its Importance to Bioremediation, in Bioremediation, editor: V.J. James, Kluwer Academic Publisher, Boston. • Manilal, V. B. and Alexander, M., 1991, Factors Affecting the Microbial Degradation of Phenanthrene in Soil: Appl. Microbiol. Biotechnol., 35: 401-405. • Mark, R., Yan, J. and Daniel, K. C., 1997, The Effect of Biosurfactants on the Fate and Transport of Nonpolar Organic Contaminants in Porous Media, Water Resources Research Grant Proposal. http://water.usgs.gov/wrri/97grants/de97ner.htm. • Marvin, C.H., Lundrigan, J.A., McCarry, B.E., Bryant, D.W., 1995. Determination and genotoxicity of high molecular mass polycyclic aromatic hydrocarbons isolated from coal tar-contaminated sediment. Environmental Toxicology and Chemistry 14, 2059–2066. • May, R., Schro¨ der, P., Sandermann Jr., H., 1997. Ex-situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium. Environ. Sci. Technol. 31, 2626–2633. • McCray, J.E., Brusseau, M.L., 1999. Cyclodextrin-enhanced in situ flushing of a multiple-component immiscible organic liquid contamination at the field scale: analysis of dissolution behavior. Environ. Sci. Technol. 33, 89- 95. • McCray, J.E., Baib, G., Raina, M., Maierc, R., Brusseau, M.L., 2001. Biosurfactant-enhanced solubilization of NAPL mixtures. J. Contam. Hydrol. 48, 45-68. • Means, J. C., Wood, S. G., Hassett, J. J. and Banwart, W. L., 1980, Sorption of Polynuclear Aromatic Hydrocarbons by Sediments and Soils, Environ. Sci. Technol. 14:1524-1528. • Meta Environmental, 1990. Draft report prepared for Electric Power Research Institute, RP2879-01. • Meysami, P. and Baheri, H., 2003, Pre-Screening of Fungi and Bulking Agents for Contaminated Soil Remediation, Adv. Environ. Res. 7: 881-887 • Miller, R.M., and Bartha, R. 1989. Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl. Environ. Microbiol. 55: 269–274. • Moen, M.A., Hammel, K.E., 1994. Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for Phenanthrene oxidation by the intact fungus. Applied and Environmental Microbiology 60, 1956–1961. • Molina, M., Araujo, R., Hodson, R.E. (1999). “Cross-induction of Pyrene andPhenanthrene in a Mycobacterium sp. isolated from PAHs contaminated river sediments.” Can. J. Microbiol., 45, 520-529. • Monod, J. (1949). “The growth of bacterial cultures” Annu. Rev. Microbiol., 3, 371–394. Scott, K.J., (1989). Contaminated marine sediments – Assessment and remediation. A. Corell, ed. National Academy Press, Washington, DC, 132-154. “Effects of contaminated sites on marine benthic biota and communities.” • Morris, P.J., et al., Establishment of a Polychlorinated Biphenyl-Degrading Enrichment Culture with Predominantly Metadechlorination. Applied and Environmental Microbiology, 1992. 58(9): p. 3088-3094. • Mueller, J.G., Lantz, S.E., Blattmann, B.O., and Chapman, P.J. 1991. Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol and creosote- contaminated materials: slurry-phase bioremediation. Environ. Sci. Technol. 25: 1055–1061. • Mulder, H., Breure, A.M., VanAndel, J.G., Grotenhuis, J.T.C., Rulkens, W.H., 1998. Influence of hydrodynamic conditions on Naphthalene dissolution and subsequent biodegradation. Biotechnol. Bioeng. 57, 145-154. • Mulder, H., Breure, A. M., Van Honschooten, D., Grotenhuis, J. T. C., Van Andel, J. G. and Rulkens, W. H., 1998, Effect of Biofilm Formation by Pseudomonas 8909N on the Bioavailability of Solid Naphthalene, Appl. Microbiol Biotechnol 50: 277-283. • Mulligan, C.N., Gibbs, B.F., 1993. Factors influencing the economics of biosurfactants. In: Kosaric, N. (Ed.), Biosurfactants, Production, Properties, Applications. Marcel Dekker, New York, pp. 329–371. • Nam, K., Rodriguez, W., Kukor, J.J., 2001. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45, 11–20. • National Research Council of Canada (NRCC), 1983, Polycyclic Aromatic Hydrocarbons in the Aquatic Environment: Formation, Sources, Fate and Effects on Aquatic Biota. NRCC Report No. 18981, p. 209. • Nawaz, M.S., K.C. Chapatwala, and J.H. Wolfram, Degradation of acetonitrile by Pseudomonas putida. Appl. Environ. Microbiol., 1989. 55: p. 2267-2274. • Oberbremer, A., Muller-Hurtig, R., Wagner, F., 1990. Effect of the addition of microbial surfactants on hydrocarbon degradation ina soil population in a stirred reactor. Applied Microbiology and Biotechnology 32, 485–489. • O'Conner, J. M. and Huggett, R.J., 1988, Aquatic Pollution Problems, North Atlantic Coast, including Chesapeake Bay, Aquatic Toxicol., 11:163-190. • Ogram, A.V., Jessup, R.E., Ou, L.T., Rao, P.S.C, 1985. Effects of sorption on biological degradation rates of (2,4-Dichlorophenoxy) acetic acid in soils. Appl. Environ. Microbiol. 49, 582-587. • Okuda, I., McBride, J.F., Gleyser, S.N., Miller, C.T., 1996. Physicochemical transport processes affecting the removal of residual DNAPL by nonionic surfactant solutions. Environ. Sci. Technol. 30, 1852-1860. • Pannu, J.K., Singh, A., and Ward, O.P. 2003. Vegetable oil as a contaminated soil remediation amendment: application of peanut oil for extraction of polycyclic aromatic hydrocarbons fromsoil. Process Biochem. In press. • Pannu, J.K., Singh, A., Ward, O.P., 2003. Influence of peanut oil on microbial degradation of polycyclic aromatic hydrocarbons. Can. J. Microbiol. 49, 508–513. • Pannu, J.K., Singh, A., Ward, O.P., 2004. Vegetable oil as a contaminated soil remediation amendment: addition of peanut oil for extraction of polycyclic aromatic hydrocarbons from soil. Process Biochem. 39, 1211–1216. • Park, K.S., Sims, R.C., Dupont, R.R., 1990. Transformation of PAHs in Soil Systems. Journal of Environmental Engineering 116, 632–640. • Pennel, K.D., Jin, M., Abriola, L.M., Pope, G.A., 1994. Surfactant enhanced solubilization remediation of soil columns contaminated by residual tetrachloroethylene. J. Contam. Hydrol. 16, 35-53. • Perry, J.J., 1979. Microbial cooxidations involving hydrocarbons. Microbiol. Rev. 43, 59-72 • Pirt, S.J., 1965. Maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. [Biol.] 163, 224-231. • Pignatello, J., 1990, Slowly Reversible Sorption of Aliphatic Halocarbons in Soils: 2 Mechanistic Aspects, Environ. Sci. Technol., 9: 1117-1126. • Pignatello, J.J., Baehr, K., 1994. Ferric complexes as catalysts for ‘‘Fenton’’ degradation of 2,4-D and metolachlor in soil. Journal of Environmental Quality 23, 365–370. • Postma, J., vanVeen, J.A., 1990. Habitable pore-space and survival of Rhizobium leguminosarum biovar trifolii introduced into soil. Microb. Ecol. 19, 149-161 • Prabhu, Y. and Phale, P. S., 2003, Biodegradation of Phenanthrene by Pseudomonas sp. Strain PP2: Novel Metabolic Parthway, Role of Biosurfactant and Cell Surface Hydrophobicity in Hydrocarbon Assimilation. Appl. Microbiol. Biotechnol. 61: 342- 351. • Pradhan, S.P., Paterek, J.R., Liu, B.Y., Conrad, J.R., Srivastava, V.J., 1997. Pilot-scale bioremediation of PAH-contaminated soils. Applied Biochemistry and Biotechnology 63–65, 759–773. • Providenti, M. A., Flemming, C. A., Lee, H. and Trevors, J. T., 1995, Effect of Addition of Rhamnolipid Biosurfactants or Rhamnolipid-Producing Pseudomonas aeruginosa on Phenanthrene Mineralisation in Soil Slurries, FEMS Microbiol. Ecol. 17: 15-26. • Purwaningsih, I. S., 2002, Mass Transfer and Bioremediation of Solid Polycyclic Aromatic Hydrocarbon (PAH) Particles in Bioreactors, PhD Thesis, University of Saskatchewan. • Rahman, K.S.M., Banat, I.M., Rahman, T.J., Thayumanavan, Tha., Lakshmanaperumalsamy, P., 2002. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technology 81, 25–32. • Ravikumar, J.X., 1992. Treatment of organic contaminants on soil by chemical oxidation and chemical oxidation coupled with biodegradation. Ph.D. Thesis, Drexel University. • Reid, Stokes, Jones, Semple, Nonexhaustive Cyclodextrins-Based extraction technique for the evaluation of PAH bioavailability, U.K, 2000; • Reid, B.J., Stokes, J.D., Jones, K.C., Semple, K.T., 2000. Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ. Sci. Technol. 34, 3174-3179. • René van Hervijen, Metabolic and cometabolic biodegradation of PAHs, Amsterdam, 2003; • Rice, R.G., and Robson, C.M. 1982. Biological activated carbon. Ann Arbor Science Publishers, Ann Arbor, Mich. • Richter, B.E., Jones, B.A., Ezzell, J.L., Porter, N.L., Avdalovic, N., and Pohl, C. 1996. Accelerated solvent extraction: a t • Riess, R., Nemati, M., Hill, G. and Headley, J., 2004, Biodegradation of Methyl and Dimethyl Naphthalenes in a Bead Mill Bioreactor, Canadian International Petroleum Conference. • Rijnaarts, H.H.M., Bachmann, A., Jumelet, J.C., Zehnder, A.J.B., 1990. Effect of desorption and intraparticle mass-transfer on the aerobic biomineralization of alpha-hexachlorocyclohexane in a contaminated calcareous soil. Environ. Sci. Technol. 24, 1349-1354 • Rockne K. J., Strand S. E., 1998, Biodegradation of Bicyclic and Polycyclic Aromatic Hydrocarbons in Anaerobic Enrichments, Environ. Sci. Technol. 32: 3962-3967. • Rosen, M.J., 1978. Surfactants and Interfacial Phenomena. John Wiley and Sons, New York. • Rosenberg, E., and Ron, E.Z. 1999. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154–162. • Rouse, J.D., Sabatini, D.A., Suflita, J.M., and Harwell, J.H. 1994. Influence of surfactants on microbial degradation of organic compounds. Crit. Rev. Environ. Sci. Technol. 24: 325–370. • Samson, R., Cseh, T., Hawari, J., Greer, C.W., Zaloum, R., 1990. Biotechnologies applique´ es a` la restauration de sites contamine´ s avec d’application d’une technique physico chimique et biologiquepour les sols contamine´ s par des BPC. Science et Techniques de l’Eau 23, 15–18. • Saner, M., Bachofen, R., Schneider, K., 1996, Simulation of Onsite Vacuum Heap Aeration and Soil Surface Enlargement by a Closed Agitated Soil Bioreactor. Microbiol Res. 151: 29-35. • Schaich, K.M., Borg, D.C., 1988. Fenton reactions in lipid phases. Lipids 23, 570–579. • Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W. and Warshawsky, D., 1996, Degradation of Pyrene, Benzo[a]Anthracene, and Benzo[a]Pyrene by Mycobacterium sp. Strain RGHII-135, Isolated from a Former Coal Gasification Site, Appl. Environ. Microbiol., 62: 13-19. • Scott, J.P., and Ollis, D.F. 1995. Integration of chemical and biological oxidation processes for water treatment: review and recommendations. Environ. Prog. 14: 88–103. • Sedlak, D.L., Andren, A.W., 1991. Oxidation of chlorobenzene with Fenton_s reagent. Environmental Science and Technology 25, 777–782. • Segel, I.H., (1975). Enzyme kinetics, John Wiley & Sons, New York. Stringfellow, W.T., and Aitken, M.D. (1995). “Competitive metabolism of Naphthalene, methylNaphthalenes, and Fluorene by Phenanthrene–degrading Pseudomonads.” Appl. Environ. Microbiol., 61, 357-362.Stryer, L. (1995). Biochemistry, W.H.Freeman & Co., New York. • Sherill, T.W., and Sayler, G.S. 1980. Phenanthrene biodegradation in freshwater environments. Appl. Environ. Microbiol. 39: 172–178. • Shuler, M. L. and Kargi, F, 2002, Bioprocess Engineering: Basic Concepts, Second Edition, Prentice Hall P T R, Englewood Cliffs, New Jersey, p. 61-63. • Shuttleworth, K.L., and Cerniglia, C.E. 1996. Bacterial degradation of low concentrations of Phenanthrene and inhibition by Naphthalene. Microb. Ecol. 31: 305–317. • Shuttleworth, K.L., and Cerniglia, C.E. 1996. Bacterial degradation of low concentrations of Phenanthrene and inhibition by Naphthalene. Microb. Ecol. 31: 305–317. • Sigurdson, S.P., and Robinson, C.W. 1978. Substrate inhibited microbiological regeneration of granular activated carbon. Can. J. Chem. Eng. 56: 330–338. • Sim, L., and Ward, O.P. 1997. Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol. 19: 232–238. • Smith, M. J., Lethbridge, G. and Burns, R. G., 1997, Bioavailability and Biodegradation of PAHs in Soils, FEMS Microbiol. Let., 152: 141-147 • Smucker, S.J., 2000. Region 9 Preliminary Remediation Goals––R9 PRG Tables. USEPA Region 9 Office, San Francisco. Available from <www.epa.gov/docs/region09/ waste/sfund/prg/files/PRG2000.pdf>. • Sonntag, N.O.V., 1988. Surfactants in herbicide dispersions. Surfactant Science Series 28, 237–261. • Srivastava, V.J., Kelley, R.L., Paterek, J.R., Hayes, T.D., Nelson, G.L., Golchin, J., 1994. A field-scale demonstration of a novel bioremediation process for MGP sites. Applied Biochemistry and Biotechnology 45/46, 741–755. • Staffan Lundstedt (2003), Analysis of PAHs and their transformation products in contaminated soil and remedial processes ; University of Amsterdam, The Netherlands • Stapleton, J.M., Mihelcic, J.R., and Lueking, D.R. 1994. Adsorption and desorption kinetics of Pyrene onto a Great Lakes sediment. J. Gt. Lakes Res. 20: 561–568. • Steinberg, S., Pignatello, J. and Sawhney, B., 1987, Persistence of 1, 2 Dibromoethane in Soils: Entrapment in Intraparticle Micropores, Environ. Sci. Technol., 21: 1201-1208. • Steinberg, S.M., Pignatello, J.J., Sawhney, B.L., 1987. Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environmental Science and Technology 21, 1201–1208. • Stevens, T.O., T.G. Linkfield, and J.M. Tiedje, Physiological characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium. Appl. Environ. Microbiol., 1988. 54: p. 2938-2943. • Straube, W.L., Nestler, C.C., Hansen, L.D., Ringleberg, D., Pritchard, P.J., Jones-Meehan, J., 2003. Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnologica 2–3, 179–196. • Stringfellow, W.T., and Aitken, M.D. 1995. Competitive metabolism of Naphthalene, methyNaphthalenes, and Fluorene by Phenanthrene degrading pseudomonads. Appl. Environ. Microbiol. 61: 357–362. • Stuart E. Strand, Univ. Washington, Biological Degradation of Pollutants — Growth versus Cometabolism • Stucki, G., and Alexander, M. 1987. Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl. Environ. Microbiol. 53: 292–297. • Stucki, G., et al., Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Arch. Microbiol., 1981. 130: p. 366-371. • Sutherland, J. B., 1992, Detoxification of Polycyclic Aromatic Hydrocarbons, J. Ind. Microbiol., 9: 53-62. • Sutherland JB, Rafii F, Khan AA Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Young LY Cerniglia CE (ed), Microbial Transformation and Degradation of Toxic Organic Chemicals, Wiley-Liss, Inc, New York, pp. 269-306. • Szejtli, J., 1982.Cyclodextrins and their InclusionComplexes.Akademiai Kiado, Budapest, Hungary. • Szolar, Oliver H.J.; Rost, Helmut; Braun, Rudolf and Loibner Andreas P.,2002. Analysis of Policyclic Aromatic Hydrocarbons in Soil: Minimizing Sample Pretreatment Using Automated Soxhlet with Ethyl Acetate as Extraction Solvent. Anal.Chem.74, 2379-2385. • Taylor, L.T., Jones, D.M., 2001. Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere 44, 1131– 1136. • Tiehm, A., Stieber, M., Werner, P., Frimmel, F.H., 1997. Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ. Sci. Technol. 31, 2570–2576. • Tiehm, A. 1994. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60: 258–263. • Tick, G.R., Lourenso, F., Wood, A.L., Brusseau, M.L., 2003. Pilot scale demonstration of cyclodextrin as a solubility-enhancement agent for remediation of a tetrachloroethene-contaminated aquifer. Environ. Sci. Technol. 37, 5829-5834. • Trzesicka-Mlynarz, D., and Ward, O.P. 1995. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH contaminated soil. Can. J. Microbiol. 41: 470–476. • U.S. E.P.A. Cleaning Up the Nation’s Waste Sites: Markets and Technology Trends, 2004 Edition. • Van Hamme, J., and Ward, O.P. 1999. Influence of chemical surfactants on the biodegradation of crude oil by a mixed bacterial culture. Can. J. Microbiol. 45: 130–137. • Van Loosdrecht, M. C., Lyklema, J., Norde, W. and Zehnde, A. J. B., 1990, Influences of Interfaces on Microbial Activity, Microbiol. Rev., 54: 75-87. • Verstichel, S., De Wilde, B., Fenyvesi, E., Szejtli, J., 2004. Investigation of the aerobic biodegradability of several types of cyclodextrins in a laboratory-controlled composting test. J. Polym. Environ. 12, 47e55. • Vidali, M., 2001, Bioremediation: An Overview. Pure Appl. Chem., 73(7): 1163-1172. • Viglianti, Hanna, De Brauer, Germain, Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study, France, 2005; • Vipulanandan, C., Ren, X., 2000. Enhanced solubility and biodegradation of Naphthalene with biosurfactant. Journal of EnvironmentalEngineering 126, 629–634. • Volkering, F., Breure, A.M., Sterkenburg, A., van Andel, J.G., 1992. Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl. Microbiol. Biotechnol. 36, 548-552. • Volkering, F., Breure, A. M. and Van Andel, J. G., 1993, Effect of Microorganisms on the Bioavailability and Biodegradation of Crystalline Naphthalene, Appl. Microbiol Biotechnol., 40: 535-540 • Volkering, F., Breure, A. M. and Van Andel, J. G., 1993, Effect of Microorganisms on the Bioavailability and Biodegradation of Crystalline Naphthalene, Appl. Microbiol Biotechnol., 40: 535-540.ù • Wang, X., Brusseau, M.L., 1993. Solubilization of some low-polarity organic compounds by hydroxypropyl-b-cyclodextrin. Environ. Sci. Technol. 27, 2821-2825. • Wang, X., Marlowe, E.M., Miller-Maier, R.M., Brusseau, M.L., 1998. Cyclodextrin-enhanced biodegradation of Phenanthrene. Environ. Sci. Technol. 32, 1907-1912. • Walter, U., et al., Degradation of Pyrene by Rhodococcus sp UW1. Applied Microbiology and Biotechnology, 1991. 34: p. 671-676. • Walters, R.W., Luthy, R.G., 1984. Equilibrium adsorption of polycyclic aromatic hydrocarbons from water onto activate carbon. Environmental Science and Technology 18, 395–403. • Watts, R.J., 1992. Hydrogen peroxide for physicochemically degrading petroleum-contaminated soils. Remediation 17, 1797–1802. • Watts, R.J., Dilly, S.E., 1996. Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils. Journal of Hazardous Materials 51, 209–224. • Watts, R.J., Udell, M.D., Monsen, R.M., 1993. Use of iron minerals in optimizing the peroxide treatment of contaminated soils. Water Environment Research 65, 839–844. • Watts, R.J., Kong, S., Dippre, M., Barnes, W.T., 1994. Oxidation of sorbed hexachlorobenzene in soils using catalyzed hydrogen peroxide. Journal of Hazardous Materials 39, 33–47. • Watts, R.J., Haller, D.R., Jones, A.P., Teel, A.L., 2000. A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton_s reactions. Journal of Hazardous Materials B 76, 73–89. • Weber, W. J. and Miller, C., 1988, Modeling the Sorption of Hydrophobic Contaminants by Aquifer Materials - 1, Water Res., 22: 457-464. • Weeks, B. A. and Warinner, J. E., 1984, Effects of Toxic Chemicals on Macrophage Phagocytosis in two Estuarine Fishes, Mar. Environ. Res., 14: 327-35.118 • Weeks, B. A. and Warinner, J. E., 1986, Functional Evaluation of Macrophages in Fish from a Polluted Estuary, Vet. Immun. Immunopathol., 12: 313-20. • Whitehouse, B.G., 1984. The effect of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons. Mar. Chem. 14, 319e332. • Wick, L.Y., Colangelo, T., Harms, H., 2001a. Kinetics of masstransfer limited bacterial growth on solid PAHs. Environ. Sci. Technol. 3354-361. • Wilson, S. C. and Jones, K. C., 1993, Bioremediation of Soil Contaminated with Polycyclic Aromatic Hydrocarbons (PAHs), a Review, Environ. Pollut., 81: 229-249. • Wu, S. and Geschwend, P., 1986, Sorption Kinetics of Hydrophobic Organic Compounds to Natural Sediments and Soils, Environ. Sci. Technol., 20: 717-725 • Wu, J., Harwell, J.H., O_Rear, E.A., 1987. Two-dimensionalreaction solvents: surfactant bilayers in the formation of ultrathin films. Langmuir 3, 531–537. • Wunder T, Marr J, Kremer S, Sterner O, Anke H (1997) 1-methoxyPyrene and 1,6-dimethoxyPyrene: Two novel metabolites in fungal metabolism of polycyclic aromatic hydrocarbons. Arch.Microbiol. 167: 310-316. • Ye, D., Siddiq, M. A., Maccubbin, A., Kumar, S. and Sikka, H. C, 1996, Degradation of Polynuclear Aromatic Hydrocarbons by Sphingomonas paucimobilis, Environ. Sci. Technol., 30: 136-142. • Yeom, I. T. and Ghosh, M. M., 1993, Surfactants in Mobilizing Soil-Bound Polycyclic Aromatic Hydrocarbons Using Nonionic Surfactants: Proceedings CSCE-ASCE National Conference on Environmental Engineering (NCEE), 1342-1352, Montreal, Canada. • Yeom, Ick-Tae and Ghosh, M. M., 1998, Mass Transfer Limitation in PAH-Contaminated Soil Remediation, Wat. Sci. Technol., 37(8): 111-118. • Yeom, I.T., Ghosh, M.M., Cox, C.D., Robinson, K.G., 1995. Micellar solubilization of polynuclear aromatic hydrocarbons in coal tar contaminated soils. Environ. Sci. Technol. 29, 3015-3021. • Yeom, I.T., Ghosh, M.M., Cox, C.D., 1996. Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 30 (5), 1589–1595.

Direitos

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #PAHs, Bioavailability, Bioremediation, oil #scuola :: 843884 :: Ingegneria e Architettura #cds :: 0450 :: Ingegneria per l'ambiente e il territorio [LS-DM509] #orientamento :: 364 :: Tecniche e tecnologie ambientali #sessione :: terza
Tipo

PeerReviewed