Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude


Autoria(s): Boushel, R.; Calbet, José A.L.; Radegran, Goran; Sondergaard, H.; Wagner, P.D.; Saltin, Bengt
Data(s)

27/10/2011

27/10/2011

2001

Resumo

[EN] BACKGROUND: In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied. METHODS AND RESULTS: HR, Q, oxygen uptake, mean arterial pressure, and leg blood flow were determined at rest and during cycle exercise with and without vagal blockade with glycopyrrolate in 7 healthy lowlanders after 9 weeks' residence at >/=5260 m (ALT). At ALT, glycopyrrolate increased resting HR by 80 bpm (73+/-4 to 153+/-4 bpm) compared with 53 bpm (61+/-3 to 114+/-6 bpm) at sea level (SL). During exercise at ALT, glycopyrrolate increased HR by approximately 40 bpm both at submaximal (127+/-4 to 170+/-3 bpm; 118 W) and maximal (141+/-6 to 180+/-2 bpm) exercise, whereas at SL, the increase was only by 16 bpm (137+/-6 to 153+/-4 bpm) at 118 W, with no effect at maximal exercise (181+/-2 bpm). Despite restoration of maximal HR to SL values, glycopyrrolate had no influence on Q, which was reduced at ALT. Breathing FIO(2)=0.55 at peak exercise restored Q and power output to SL values. CONCLUSIONS: Enhanced parasympathetic neural activity accounts for the lowering of HR during exercise at ALT without influencing Q. The abrupt restoration of peak exercise Q in chronic hypoxia to maximal SL values when arterial PO(2) and SO(2) are similarly increased suggests hypoxia-mediated attenuation of Q.

Identificador

http://hdl.handle.net/10553/6538

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11591615" target="_blank">http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11591615</a></p> Circulation. 2001 Oct.9;104(15); 1785-91

Palavras-Chave #241106 Fisiología del ejercicio
Tipo

info:eu-repo/semantics/article