Biphasic positive airway pressure minimizes biological impact on lung tissue in mild acute lung injury independent of etiology


Autoria(s): Saddy, Felipe ; Moraes, Lillian ; Santos, Cintia ; Oliveira, Gisele ; Cruz, Fernanda ; Morales, Marcelo ; Capelozzi, Vera Luiza; de Abreu, Marcelo ; Baez Garcia, Cristiane Souza Nascimento ; Pelosi, Paolo ; Macêdo Rocco, Patricia Rieken 
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

11/12/2013

11/12/2013

2013

Resumo

Abstract Introduction Biphasic positive airway pressure (BIVENT) is a partial support mode that employs pressure-controlled, time-cycled ventilation set at two levels of continuous positive airway pressure with unrestricted spontaneous breathing. BIVENT can modulate inspiratory effort by modifying the frequency of controlled breaths. Nevertheless, the optimal amount of inspiratory effort to improve respiratory function while minimizing ventilator-associated lung injury during partial ventilatory assistance has not been determined. Furthermore, it is unclear whether the effects of partial ventilatory support depend on acute lung injury (ALI) etiology. This study aimed to investigate the impact of spontaneous and time-cycled control breaths during BIVENT on the lung and diaphragm in experimental pulmonary (p) and extrapulmonary (exp) ALI. Methods This was a prospective, randomized, controlled experimental study of 60 adult male Wistar rats. Mild ALI was induced by Escherichia coli lipopolysaccharide either intratracheally (ALIp) or intraperitoneally (ALIexp). After 24 hours, animals were anesthetized and further randomized as follows: (1) pressure-controlled ventilation (PCV) with tidal volume (Vt) = 6 ml/kg, respiratory rate = 100 breaths/min, PEEP = 5 cmH2O, and inspiratory-to-expiratory ratio (I:E) = 1:2; or (2) BIVENT with three spontaneous and time-cycled control breath modes (100, 75, and 50 breaths/min). BIVENT was set with two levels of CPAP (Phigh = 10 cmH2O and Plow = 5 cmH2O). Inspiratory time was kept constant (Thigh = 0.3 s). Results BIVENT was associated with reduced markers of inflammation, apoptosis, fibrogenesis, and epithelial and endothelial cell damage in lung tissue in both ALI models when compared to PCV. The inspiratory effort during spontaneous breaths increased during BIVENT-50 in both ALI models. In ALIp, alveolar collapse was higher in BIVENT-100 than PCV, but decreased during BIVENT-50, and diaphragmatic injury was lower during BIVENT-50 compared to PCV and BIVENT-100. In ALIexp, alveolar collapse during BIVENT-100 and BIVENT-75 was comparable to PCV, while decreasing with BIVENT-50, and diaphragmatic injury increased during BIVENT-50. Conclusions In mild ALI, BIVENT had a lower biological impact on lung tissue compared to PCV. In contrast, the response of atelectasis and diaphragmatic injury to BIVENT differed according to the rate of spontaneous/controlled breaths and ALI etiology.

The authors express their gratitude to Andre Benedito da Silva for animal care, Ana Lucia Neves da Silva for help with microscopy, Moira Elizabeth Schottler and Claudia Buchweitz for assistance in editing the manuscript and MAQUET for providing technical support. This study was supported by Centers of Excellence Program (PRONEX-FAPERJ), Brazilian Council for Scientific and Technological Development (CNPq), Rio de Janeiro State Research Supporting Foundation (FAPERJ), São Paulo State Research Supporting Foundation (FAPESP), National Institute of Science and Technology of Drugs and Medicine (INCT-INOFAR), Coordination for the Improvement of Higher Level Personnel (CAPES), and the European Community’s Seventh Framework Programme (TARKINAID, FP7-2007-2013).

Identificador

1364-8535

http://www.producao.usp.br/handle/BDPI/43645

10.1186/cc13051

http://ccforum.com/content/17/5/R228

Idioma(s)

eng

Relação

Critical Care

Direitos

openAccess

Saddy et al.; licensee BioMed Central Ltd. - This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tipo

article