Systematics of the Oswaldoi Complex (Anopheles, Nyssorhynchus) in South America


Autoria(s): Ruiz-Lopez, Freddy ; Wilkerson, Richard C; Ponsonby, David J; Herrera, Manuela ; Sallum, Maria Anice Mureb; Velez, Ivan ; Quiñones, Martha L; Flores-Mendoza, Carmen ; Chadee, Dave D; Alarcon, Joubert ; Alarcon-Ormasa, Joubert ; Linton, Yvonne-Marie 
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

11/12/2013

11/12/2013

2013

Resumo

Abstract Background Effective malaria control relies on accurate identification of those Anopheles mosquitoes responsible for the transmission of Plasmodium parasites. Anopheles oswaldoi s.l. has been incriminated as a malaria vector in Colombia and some localities in Brazil, but not ubiquitously throughout its Neotropical range. This evidence together with variable morphological characters and genetic differences supports that An. oswaldoi s.l. compromises a species complex. The recent fully integrated redescription of An. oswaldoi s.s. provides a solid taxonomic foundation from which to molecularly determine other members of the complex. Methods DNA sequences of the Second Internal Transcribed Spacer (ITS2 - rDNA) (n = 192) and the barcoding region of the Cytochrome Oxidase I gene (COI - mtDNA) (n = 110) were generated from 255 specimens of An. oswaldoi s.l. from 33 localities: Brazil (8 localities, including the lectotype series of An. oswaldoi), Ecuador (4), Colombia (17), Trinidad and Tobago (1), and Peru (3). COI sequences were analyzed employing the Kimura-two-parameter model (K2P), Bayesian analysis (MrBayes), Mixed Yule-Coalescent model (MYC, for delimitation of clusters) and TCS genealogies. Results Separate and combined analysis of the COI and ITS2 data sets unequivocally supported four separate species: two previously determined (An. oswaldoi s.s. and An. oswaldoi B) and two newly designated species in the Oswaldoi Complex (An. oswaldoi A and An. sp. nr. konderi). The COI intra- and inter-specific genetic distances for the four taxa were non-overlapping, averaging 0.012 (0.007 to 0.020) and 0.052 (0.038 to 0.064), respectively. The concurring four clusters delineated by MrBayes and MYC, and four independent TCS networks, strongly confirmed their separate species status. In addition, An. konderi of Sallum should be regarded as unique with respect to the above. Despite initially being included as an outgroup taxon, this species falls well within the examined taxa, suggesting a combined analysis of these taxa would be most appropriate. Conclusions: Through novel data and retrospective comparison of available COI and ITS2 DNA sequences, evidence is shown to support the separate species status of An. oswaldoi s.s., An. oswaldoi A and An. oswaldoi B, and at least two species in the closely related An. konderi complex (An. sp. nr. konderi, An. konderi of Sallum). Although An. oswaldoi s.s. has never been implicated in malaria transmission, An. oswaldoi B is a confirmed vector and the new species An. oswaldoi A and An. sp. nr. konderi are circumstantially implicated, most likely acting as secondary vectors.

This study formed part of the PhD study of FRL conducted at the Natural History Museum, London, and awarded from Canterbury Christ Church University, Canterbury, Kent, U.K. This investigation received financial support from the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) (grant A50252 to YML), Canterbury Christ Church University (studentship to FRL). Additional funding was obtained through the Friends of the Natural History Museum, London to further the activities of the Mosquito Barcoding Initiative (to YML); the Consortium for the Barcode of Life (CBOL) (to YML and RCW) and the Sloane Foundation (to YML and RCW); the National Institute of Health (NIH), USA (grant 2R01AI054139 to Jan E. Conn) and COLCIENCIAS (grant 110134319196 to MLQ). We thank Dr. A. Papadopoulou for help with the MYC analysis and Dr. S. Mahamdallie for helpful suggestions and discussions during preparation of the manuscript.

This manuscript was prepared in part whilst YML held a National Research Council Senior Research Associateship Award at the Walter Reed Army Institute of Research. This research was performed in part under a Memorandum of Understanding between the Walter Reed Army Institute of Research and the Smithsonian Institution, with institutional support provided by both organizations. The material to be published reflects the views of the authors and should not be construed to represent those of the Department of the Army or the Department of Defense.

Identificador

Parasites & Vectors, 6(1), nov. 2013

1756-3305

http://www.producao.usp.br/handle/BDPI/43632

doi:10.1186/1756-3305-6-324

http://www.parasitesandvectors.com/content/6/1/324

Idioma(s)

eng

Publicador

London

Relação

Parasites & Vectors

Direitos

openAccess

Ruiz-Lopez et al.; licensee BioMed Central Ltd. - This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Palavras-Chave #Anopheles oswaldoispecies complex #An. oswaldois.s. #An. oswaldoi A #An. oswaldoi B #An.sp. nr. konderi #COI barcoding #ITS2
Tipo

article