Time lags of the kilohertz quasi-periodic oscillations in the low-mass X-ray binaries 4U 1608−52 and 4U 1636−53


Autoria(s): Avellar, Marcio Guilherme Bronzato de; Méndez, Mariano; Sanna, Andrea; Horvath, Jorge Ernesto
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

06/11/2013

06/11/2013

2013

Resumo

We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron-star lowmass X-ray binaries 4U 1608−52 and 4U 1636−53, using a large data set obtained with the Rossi X-ray Timing Explorer. We confirmed that, in both sources, the time lags of the lower kHz QPO are soft and their magnitude increases with energy. We also found that: (i) In 4U 1636−53, the soft lags of the lower kHz QPO remain constant at∼30 μs in the QPO frequency range 500–850 Hz, and decrease to ∼10 μs when the QPO frequency increases further. In 4U 1608−52, the soft lags of the lower kHz QPO remain constant at 40 μs up to 800 Hz, the highest frequency reached by this QPO in our data. (ii) In both sources, the time lags of the upper kHz QPO are hard, independent of energy or frequency and inconsistent with the soft lags of the lower kHz QPO. (iii) In both sources the intrinsic coherence of the lower kHz QPO remains constant at ∼0.6 between 5 and 12 keV, and drops to zero above that energy. The intrinsic coherence of the upper kHz QPO is consistent with being zero across the full energy range. (iv) In 4U 1636−53, the intrinsic coherence of the lower kHz QPO increases from ∼0 at ∼600 Hz to ∼1, and it decreases to ∼0.5 at 920 Hz; in 4U 1608−52, the intrinsic coherence is consistent with the same trend. (v) In both sources the intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636−53 between 700 and 900 Hz where the intrinsic coherence marginally increases. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs’ amplitude and quality factor in these two sources.

The author wish to thank Beike Hiemstra, Diego Altamirano and Guobao Zhang for their help and useful discussions. MGBA and JEH acknowledge the financial support from CAPES. MGBA is grateful to the Kapteyn Astronomical Institute for their hospitality.

Identificador

Monthly Notices of the Royal Astronomical Society, Oxford, v. 433, p. 3453-3463, 2013

http://www.producao.usp.br/handle/BDPI/42439

10.1093/mnras/stt1001

http://dx.doi.org/10.1093/mnras/stt1001

Idioma(s)

eng

Publicador

Oxford University Press

Oxford

Relação

Monthly Notices of the Royal Astronomical Society

Direitos

openAccess

Palavras-Chave #stars: neutron #X-rays: binaries #X-rays: individual: 4U 1608−52 #X-rays: individual: 4U 1636−53 #ASTRONOMIA #ESTRELAS BINÁRIAS #RAIOS X
Tipo

article

original article

publishedVersion