DNA vaccine containing the mycobacterial hsp65 gene prevented insulitis in MLD-STZ diabetes


Autoria(s): Santos, Rubens R; Sartori, Alexandrina ; Lima, Deison S; Souza, Patrícia RM; Coelho-Castelo, Arlete AM; Bonato, Vânia LD; Silva, Célio L
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

26/08/2013

26/08/2013

01/09/2009

Resumo

Abstract Background Our group previously demonstrated that a DNA plasmid encoding the mycobacterial 65-kDa heat shock protein (DNA-HSP65) displayed prophylactic and therapeutic effect in a mice model for tuberculosis. This protection was attributed to induction of a strong cellular immunity against HSP65. As specific immunity to HSP60 family has been detected in arthritis, multiple sclerosis and diabetes, the vaccination procedure with DNA-HSP65 could induce a cross-reactive immune response that could trigger or worsen these autoimmune diseases. Methods In this investigation was evaluated the effect of a previous vaccination with DNA-HSP65 on diabetes development induced by Streptozotocin (STZ). C57BL/6 mice received three vaccine doses or the corresponding empty vector and were then injected with multiple low doses of STZ. Results DNA-HSP65 vaccination protected mice from STZ induced insulitis and this was associated with higher production of IL-10 in spleen and also in the islets. This protective effect was also concomitant with the appearance of a regulatory cell population in the spleen and a decreased infiltration of the islets by T CD8+ lymphocytes. The vector (DNAv) also determined immunomodulation but its protective effect against insulitis was very discrete. Conclusion The data presented in this study encourages a further investigation in the regulatory potential of the DNA-HSP65 construct. Our findings have important implications for the development of new immune therapy strategies to combat autoimmune diseases.

The authors are grateful to Mrs. Izaíra T Brandão and Mrs. Ana Paula Masson for technical assistance. This study was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development) and the Rede Brasileira de Pesquisa em TB (REDETB, Brazilian Tuberculosis Research Network).

The authors are grateful to Mrs. Izaíra T Brandão and Mrs. Ana Paula Masson for technical assistance. This study was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development) and the Rede Brasileira de Pesquisa em TB (REDE-TB, Brazilian Tuberculosis Research Network).

Identificador

Journal of Immune Based Therapies and Vaccines. 2009 Sep 15;7(1):4

1476-8518

http://www.producao.usp.br/handle/BDPI/33003

10.1186/1476-8518-7-4

http://www.jibtherapies.com/content/7/1/4

Idioma(s)

eng

Relação

Journal of Immune Based Therapies and Vaccines

Direitos

openAccess

Santos et al; licensee BioMed Central Ltd. - This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tipo

article

original article