Evidence for glycosylation on a DNA-binding protein of Salmonella enterica


Autoria(s): Hanna, Ebert S; Roque-Barreira, Maria-Cristina; Bernardes, Emerson S; Panunto-Castelo, Ademilson ; Sousa, Marcelo V; Almeida, Igor C; Brocchi, Marcelo 
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

26/08/2013

26/08/2013

2007

Resumo

Abstract Background All organisms living under aerobic atmosphere have powerful mechanisms that confer their macromolecules protection against oxygen reactive species. Microorganisms have developed biomolecule-protecting systems in response to starvation and/or oxidative stress, such as DNA biocrystallization with Dps (DNA-binding protein from starved cells). Dps is a protein that is produced in large amounts when the bacterial cell faces harm, which results in DNA protection. In this work, we evaluated the glycosylation in the Dps extracted from Salmonella enterica serovar Typhimurium. This Dps was purified from the crude extract as an 18-kDa protein, by means of affinity chromatography on an immobilized jacalin column. Results The N-terminal sequencing of the jacalin-bound protein revealed 100% identity with the Dps of S. enterica serovar Typhimurium. Methyl-alpha-galactopyranoside inhibited the binding of Dps to jacalin in an enzyme-linked lectin assay, suggesting that the carbohydrate recognition domain (CRD) of jacalin is involved in the interaction with Dps. Furthermore, monosaccharide compositional analysis showed that Dps contained mannose, glucose, and an unknown sugar residue. Finally, jacalin-binding Dps was detected in larger amounts during the bacterial earlier growth periods, whereas high detection of total Dps was verified throughout the bacterial growth period. Conclusion Taken together, these results indicate that Dps undergoes post-translational modifications in the pre- and early stationary phases of bacterial growth. There is also evidence that a small mannose-containing oligosaccharide is linked to this bacterial protein.

We are grateful to Dr. Michael J. Ferguson (University of Dundee, UK) for the GC-MS analysis. We thank Dr. José Cesar Rosa, Dr. Eurico Arruda Neto, and Dra. Cláudia Maria Leite Maffei for helpful discussions; Mrs. Sandra M. O. Thomaz, Mrs. Imaculada C. Bragheto, and Mrs. Marly de Castro for technical assistance; and Mrs Cynthia Maria de Campos Prado Manso for reviewing the text. This work was supported by CNPq, CAPES, FAPESP, and NIH/NCRR grant # 5G12RR008124 (to BBRC/Biology/UTEP).

Identificador

Microbial Cell Factories. 2007 Apr 02;6(1):11

1475-2859

http://www.producao.usp.br/handle/BDPI/32942

10.1186/1475-2859-6-11

Idioma(s)

eng

Publicador

BioMed Central

Relação

Microbial Cell Factories

Direitos

openAccess

Hanna et al; licensee BioMed Central Ltd. - This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tipo

article

original article

publishedVersion