Influence of N-methyl-D-aspartate receptors on ouabain activation of nuclear factor-kappa B in the rat hippocampus


Autoria(s): Kawamoto, Elisa Mitiko; Lima, L. S.; Munhoz, C. D.; Yshii, Lidia Mitiko; Kinoshita, Paula Fernanda; Amaral, F. G.; Pestana, R. R. F.; Orellana, Ana Maria Marques; Neto, Jose Cipolla; Britto, Luiz Roberto Giorgetti de; Avellar, M. C. W.; Rossoni, Luciana Venturini; Scavone, Cristoforo
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

29/10/2013

29/10/2013

02/08/2013

Resumo

It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-kappa B (NF-kappa B) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-kappa B binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-kappa B activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-kappa B, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-alpha (Tnf-alpha), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF alpha B activation and increased NOS and alpha 2/3-Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-kappa B activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-kappa B activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain. (c) 2011 Wiley Periodicals, Inc.

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP [2003/08989-0]

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq [485953-2007-2]

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Universidade de Sao Paulo

Universidade de Sao Paulo

Identificador

JOURNAL OF NEUROSCIENCE RESEARCH, MALDEN, v. 90, n. 1, supl. 1, Part 3, pp. 213-228, JAN, 2012

0360-4012

http://www.producao.usp.br/handle/BDPI/36445

10.1002/jnr.22745

http://dx.doi.org/10.1002/jnr.22745

Idioma(s)

eng

Publicador

WILEY-BLACKWELL

MALDEN

Relação

JOURNAL OF NEUROSCIENCE RESEARCH

Direitos

closedAccess

Copyright WILEY-BLACKWELL

Palavras-Chave #GLUTAMATE #NF-KAPPA B #NA #K-ATPASE #N-METHYL-D-ASPARTATE #OUABAIN #ENDOGENOUS CARDIOTONIC STEROIDS #GENERATES CALCIUM OSCILLATIONS #K+-ATPASE INHIBITOR #NA+/K+-ATPASE #ADRENOCORTICAL-CELLS #NMDA RECEPTOR #ADRENAL-GLAND #NITRIC-OXIDE #IN-VIVO #GLUTAMATE #NEUROSCIENCES
Tipo

article

original article

publishedVersion