Optical emission and electron capture of rare-earth trivalent ions located at distinct sites in SnO(2) thin films


Autoria(s): Morais, Evandro A.; Scalvi, Luis V. A.; Ravaro, Leandro P.; Boulon, G; Dujardin, C; Jurdyc, A. M.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2009

Resumo

We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.

Formato

353-364

Identificador

http://dx.doi.org/10.1016/j.phpro.2009.07.020

2008 International Conference on Luminescence and Optical Spectroscopy of Condensed Matter. Amsterdam: Elsevier B.V., v. 2, n. 2, p. 353-364, 2009.

1875-3892

http://hdl.handle.net/11449/42516

10.1016/j.phpro.2009.07.020

WOS:000281959600015

WOS000281959600015.pdf

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

2008 International Conference on Luminescence and Optical Spectroscopy of Condensed Matter

Direitos

openAccess

Palavras-Chave #rare-earth #tin dioxide #sol-gel #erbium #europium
Tipo

info:eu-repo/semantics/article