Aspectos algébricos de sistemas dinâmicos
Contribuinte(s) |
Gallas, Jason Alfredo Carlson |
---|---|
Data(s) |
06/06/2007
2002
|
Resumo |
Este trabalho trata o problema genérico da obtenção analítica exata das variedades algébricas que definem domínios de estabilidade e multiestabilidade para sistemas dinâmicos dissipativos com equações de movimento definidas por funções racionais. Apresentamos um método genérico, válido para qualquer sistema dinâmico, que permite reduzir a análise de sistemas multidimensionais arbitrários à análise de um sistema unidimensional equivalente. Este método é aplicado ao mapa de Hénon, o exemplo paradigmático de sistema multidimensional, para estudar a estrutura aritmética imposta pela dinâmica das órbitas de períodos 4, 5, e 6, bem como seus domínios de estabilidade no espaço de parâmetros. Graças à obtençao de resultados analíticos exatos, podemos explorar pela primeira vez as peculariedades de cada um dos períodos mencionados. Algumas das novidades mais marcantes encontradas são as seguintes: Para período 4, encontramos um domínio de multiestabilidade caracterizado pela coexistência de duas órbitas definidas em corpos algébricos distintos. Observamos a existência de discontinuidades na dinâmica simbólica quando os parâmetros são mudados adiabáticamente ao longo de circulações fechadas no espaço de parâmetros e explicamos sua origem algébrica. Publicamos tais resultados em dois artigos: Physica A, 295, 285-290(2001) e Physical Review E, 65, 036231 (2002). Para período 5, obtivemos a variedade algébrica que define o "camarão" (shrimp) característico, obtemos uma expressão analítica para todas as órbitas de período 5, classificamos todas as singulariedades presentes no espaço de parâmetros e analisamos todas as mudanças que ocorrem ao circular-se em torno de tais singulariedades. Para período 6, da expressão analítica que fornece todas as órbitas, encontramos um resultado muito surpreendente, o mais notável desta dissertação: a possibilidade de coexistência de órbitas reais e complexas estáveis, para valores reais dos parâmetros físicos. Resultados preliminares parecem indicar serem tais órbitas complexas uma espécie de órbitas fantasmas, com semelhanças as órbitas encontradas por Gutzwiller para sistemas Hamiltonianos (não- dissipativos). |
Formato |
application/pdf |
Identificador |
http://hdl.handle.net/10183/5310 000468484 |
Idioma(s) |
por |
Direitos |
Open Access |
Palavras-Chave | #Fisica teorica da materia condensada #Sistemas dinâmicos #Metodos matematicos em fisica #Álgebra |
Tipo |
Dissertação |