Bone density and neuromuscular function in older competitive athletes depend on running distance


Autoria(s): Gast, U.; Belavý, D.L.; Armbrecht, G.; Kusy, K.; Lexy, H.; Rawer,R; Rittweger,J; Winwood,K; Zieliński,J; Felsenberg,D
Data(s)

01/07/2013

Resumo

UNLABELLED: Individuals who are involved in explosive sport types, such as 100-m sprints and long jump, have greater bone density, leg muscle size, jumping height and grip strength than individuals involved in long-distance running. INTRODUCTION: The purpose of this study is to examine the relationship between different types of physical activity with bone, lean mass and neuromuscular performance in older individuals. METHODS: We examined short- (n = 50), middle- (n = 19) and long-distance (n = 109) athletes at the 15th European Masters Championships in Poznań, Poland. Dual X-ray absorptiometry was used to measure areal bone mineral density (aBMD) and lean tissue mass. Maximal countermovement jump, multiple one-leg hopping and maximal grip force tests were performed. RESULTS: Short-distance athletes showed significantly higher aBMD at the legs, hip, lumbar spine and trunk compared to long-distance athletes (p ≤ 0.0012). Countermovement jump performance, hop force, grip force, leg lean mass and arm lean mass were greater in short-distance athletes (p ≤ 0.027). A similar pattern was seen in middle-distance athletes who typically showed higher aBMD and better neuromuscular performance than long-distance athletes, but lower in magnitude than short-distance athletes. In all athletes, aBMD was the same or higher than the expected age-adjusted population mean at the lumbar spine, hip and whole body. This effect was greater in the short- and middle-distance athletes. CONCLUSIONS: The stepwise relation between short-, middle- and long-distance athletes on bone suggests that the higher-impact loading protocols in short-distance disciplines are more effective in promoting aBMD. The regional effect on bone, with the differences between the groups being most marked at load-bearing regions (legs, hip, spine and trunk) rather than non-load-bearing regions, is further evidence in support of the idea that bone adaptation to exercise is dependent upon the local loading environment, rather than as part of a systemic effect.

Identificador

http://hdl.handle.net/10536/DRO/DU:30071013

Idioma(s)

eng

Publicador

Springer

Relação

http://dro.deakin.edu.au/eserv/DU:30071013/belavy-bonedensity-2013.pdf

http://www.dx.doi.org/10.1007/s00198-012-2234-0

Direitos

2012, International Osteoporosis Foundation and National Osteoporosis Foundation

Palavras-Chave #Science & Technology #Life Sciences & Biomedicine #Endocrinology & Metabolism #Bone #Elderly #Exercise #Mechanical loading #Muscle #Osteporosis #MINERAL DENSITY #LOADING MODALITIES #JUMPING POWER #MUSCLE POWER #AGE #MECHANOGRAPHY #STRENGTH #RUNNERS #DECLINE
Tipo

Journal Article