Different thermal analysis technique application in determination of fold surface-free energy


Autoria(s): Abolhasani, Mohammad Mahdi; Rezaei Abadchi, Majid Rezaei; Magniez, Kevin; Guo, Qipeng
Data(s)

01/01/2015

Resumo

In this work, the crystallization rates and spherulitic growth rate of miscible blends of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) were determined using differential scanning calorimetry (DSC), real-time FTIR, and optical microscopy. FTIR results suggest that blending does not induce the creation of polymorphic crystalline forms of PVDF. SAXS data demonstrate the formation of interlamellar structure after blending. The fold surface-free energy (σ e) was analyzed and compared using different thermal analysis techniques. The isothermal crystallization curves obtained using real-time FTIR and DSC explored in two different methods: t 1/2 or Avrami equation. While the Avrami equation is more widespread and precise, both analytical methods gave similar free energy of folding values. However, it was found that the direct optical method of measuring spherulitic growth rate yields σ e values 30-50 % lower than those obtained from the overall crystallization rate data. Conversely, the σ e values were found to increase with increasing amorphous ACM phase content regardless of the analytical methods.

Identificador

http://hdl.handle.net/10536/DRO/DU:30074733

Idioma(s)

eng

Publicador

Springer

Relação

http://dro.deakin.edu.au/eserv/DU:30074733/abolhasani-differentthermal-2015.pdf

http://www.dx.doi.org/10.1007/s10973-014-4121-8

Direitos

2015, Springer

Palavras-Chave #Crystallization rates #Fold surface-free energy #Polymer blends #Spherulitic growth #Science & Technology #Physical Sciences #Chemistry, Analytical #Chemistry, Physical #Chemistry #THERMOSETTING POLYMER BLENDS #CRYSTALLIZATION KINETICS #POLY(VINYLIDENE FLUORIDE) #PVDF FILMS #SEMICRYSTALLINE MORPHOLOGY #UNIAXIAL STRETCH #PHASE-FORMATION #AVRAMI ANALYSIS #EPOXY-RESIN #GROWTH-RATE
Tipo

Journal Article