Angiotensin I-converting enzyme transition state stabilization by HIS1089 : evidence for a catalytic mechanism distinct from other gluzincin metalloproteinases


Autoria(s): Fernandez, Marian; Liu, Xifu; Wouters, Merridee A.; Heyberger, Sophie; Husain, Ahsan
Data(s)

01/01/2001

Resumo

Angiotensin (Ang) I-converting enzyme (ACE) is a member of the gluzincin family of zinc metalloproteinases that contains two homologous catalytic domains. Both the N- and C-terminal domains are peptidyl-dipeptidases that catalyze Ang II formation and bradykinin degradation. Multiple sequence alignment was used to predict His<sup>1089</sup> as the catalytic residue in human ACE C-domain that, by analogy with the prototypical gluzincin, thermolysin, stabilizes the scissile carbonyl bond through a hydrogen bond during transition state binding. Site-directed mutagenesis was used to change His<sup>1089</sup> to Ala or Leu. At pH 7.5, with Ang I as substrate, <i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub> values for these Ala and Leu mutants were 430 and 4,000-fold lower, respectively, compared with wild-type enzyme and were mainly due to a decrease in catalytic rate (<i>k</i><sub>cat</sub>) with minor effects on ground state substrate binding (<i>K</i><sub>m</sub>). A 120,000-fold decrease in the binding of lisinopril, a proposed transition state mimic, was also observed with the His<sup>1089</sup> --> Ala mutation. ACE C-domain-dependent cleavage of AcAFAA showed a pH optimum of 8.2. H1089A has a pH optimum of 5.5 with no pH dependence of its catalytic activity in the range 6.5-10.5, indicating that the His<sup>1089</sup> side chain allows ACE to function as an alkaline peptidyl-dipeptidase. Since transition state mutants of other gluzincins show pH optima shifts toward the alkaline, this effect of His<sup>1089</sup> on the ACE pH optimum and its ability to influence transition state binding of the sulfhydryl inhibitor captopril indicate that the catalytic mechanism of ACE is distinct from that of other gluzincins.<br />

Identificador

http://hdl.handle.net/10536/DRO/DU:30038973

Idioma(s)

eng

Publicador

American Society for Biochemistry and Molecular Biology

Relação

http://dro.deakin.edu.au/eserv/DU:30038973/fernandez-angiotensiniconverting-2001.pdf

http://dx.doi.org/10.1074/jbc.M009009200

Direitos

2001, American Society for Biochemistry and Molecular Biology

Palavras-Chave #angiotensin I-converting enzyme #enzyme catalysis #enzyme regulation #catalysis #degradation #enzymes #hydrogen bonds #mutagenesis #pH effects #zinc
Tipo

Journal Article