Exercise-induced plasticity of AMPA-type glutamate receptor subunits in the rat brain


Autoria(s): REAL, Caroline C.; FERREIRA, Ana F. B.; HERNANDES, Marina S.; BRITTO, Luiz R. G.; PIRES, Raquel S.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain This assessment was made by verifying the expression of AMPA type glutamate receptor subunits (GluR1 and GluR2/3) We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7) 15 days (EX15) 30 days (EX30), and sedentary (S) The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 mm After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma cortcosterone was measured by ELISA in order to verify potential stress induced by physical training Overall the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30) although some opposite effects were seen after short periods of exercise (Ex3) In a few cases biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise dependent, complex regulatory processes The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise induced plasticity processes in the brain areas tested (C) 2010 Elsevier B V All rights reserved

FAPESP

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq (Brazil)

Identificador

BRAIN RESEARCH, v.1363, p.63-71, 2010

0006-8993

http://producao.usp.br/handle/BDPI/28002

10.1016/j.brainres.2010.09.060

http://dx.doi.org/10.1016/j.brainres.2010.09.060

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Brain Research

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #AMPA receptor subunits #Cerebellum #Motor cortex #Physical exercise #Striatum #STRIATAL SPINY NEURONS #NITRIC-OXIDE SYNTHASE #SYNAPTIC PLASTICITY #HIPPOCAMPAL NEUROGENESIS #CELL-PROLIFERATION #TREADMILL EXERCISE #BASAL GANGLIA #DENTATE GYRUS #CEREBELLAR #EXPRESSION #Neurosciences
Tipo

article

original article

publishedVersion