Context-aware visual exploration of molecular databases


Autoria(s): Di Fatta, Giuseppe; Fiannaca, Antonino; Rizzo, Riccardo; Urso, Alfonso; Berthold, Michael; Gaglio, Salvatore
Data(s)

2006

Resumo

Facilitating the visual exploration of scientific data has received increasing attention in the past decade or so. Especially in life science related application areas the amount of available data has grown at a breath taking pace. In this paper we describe an approach that allows for visual inspection of large collections of molecular compounds. In contrast to classical visualizations of such spaces we incorporate a specific focus of analysis, for example the outcome of a biological experiment such as high throughout screening results. The presented method uses this experimental data to select molecular fragments of the underlying molecules that have interesting properties and uses the resulting space to generate a two dimensional map based on a singular value decomposition algorithm and a self organizing map. Experiments on real datasets show that the resulting visual landscape groups molecules of similar chemical properties in densely connected regions.

Formato

text

Identificador

http://centaur.reading.ac.uk/4495/1/DiFatta06-DMB-ICDM.pdf

Di Fatta, G. <http://centaur.reading.ac.uk/view/creators/90000558.html>, Fiannaca, A., Rizzo, R., Urso, A., Berthold, M. and Gaglio, S. (2006) Context-aware visual exploration of molecular databases. In: Int.l Workshop on Data Mining in Bioinformatics, 6th IEEE Int.l Conference on Data Mining ICDM 2006, 18-22 December 2006, , Hong Kong, China, pp. 136-141. doi: 10.1109/ICDMW.2006.51 <http://dx.doi.org/10.1109/ICDMW.2006.51>

Idioma(s)

en

Relação

http://centaur.reading.ac.uk/4495/

http://dx.doi.org/10.1109/ICDMW.2006.51

doi:10.1109/ICDMW.2006.51

doi:10.1109/ICDMW.2006.51

Tipo

Conference or Workshop Item

PeerReviewed

Direitos