Efecto de la hipoxia-reoxigenación y las radiaciones ionizantes en la captación de glucosa en líneas tumorales de seno y colon cocultivadas con células endoteliales.


Autoria(s): Agudelo Ramírez, Adriana María
Contribuinte(s)

Ondo-Méndez, Alejandro

Data(s)

22/11/2012

31/12/1969

Resumo

La captación de glucosa y su conversión en lactato juega un papel fundamental en el metabolismo tumoral, independientemente de la concentración de oxígeno presente en el tejido (efecto Warburg). Sin embrago, dicha captación varía de un tipo tumoral a otro, y dentro del mismo tumor, situación que podría depender de las características microambientales tumorales (fluctuaciones de oxígeno, presencia de otros tipos celulares) y de factores estresores asociados a los tratamientos. Se estudió el efecto de la hipoxia-reoxigenación (HR) y las radiaciones ionizantes (RI) sobre la captación de glucosa, en cultivos de líneas tumorales MCF-7 y HT-29, cultivadas de forma aislada o en cocultivo con la línea celular EAhy296. Se encontró que la captación de glucosa en HR es diferente para lo descrito en condiciones de hipoxia permanente y que es modificada en el cocultivo. Se identificaron poblaciones celulares dentro de la misma línea celular, de alta y baja captación de glucosa, lo que implicaría una simbiosis metabólica de la célula como respuesta adaptativa a las condiciones tumorales. Se evaluó la expresión de NRF2 y la translocación nuclear de NRF2 y HIF1a, como vías de respuesta a estrés celular e hipoxia. La translocación nuclear de las proteínas evaluadas explicaría el comportamiento metabólico de las células tumorales de seno, pero no de colon, por lo cual deben existir otras vías metabólicas implicadas. Las diferencias en el comportamiento de las células tumorales en HR en relación con hipoxia permitirá realizar planeaciones dosimétricas más dinámicas, que reevalúen las condiciones de oxigenación tumoral constantemente.

FIUR

Glucose uptake and it´s conversion to lactate plays an important role for tumor metabolism. This phenomena does not depend on oxygen present at the tissue (Warburg effect). This glucose uptake is different between tumors and even into the same tumor. This observation may be depending on tumor microenviroment (fluctuations on oxygen availability and the presence of other non tumoral cell types) and other stress factors associated to the treatments for the disease. We evaluate the effect of hypoxia-reoxigenation (HR) and ionizing radiations (IR) on the glucose uptake, in cell cultures of MCF-7 and HT29 in isolated cultures or cocultured with EAhy926. We found that glucose uptake for the cells exposed to HR were different from that described for the hypoxia conditions. Also we observed that this pattern were modified when tumor cells were cocultured with the endothelial cell line. We identified cell populations in relation to glucose uptake (High, medium, low). We evaluate the nuclear translocation of NRF2 and HIF1a proteins, as an evaluation of hypoxia and cellular stress pathways, finding a possible correlation with breast cancer cells, but no with the colon cell line. This suggest that it may be another pathways involved. The different patterns of glucose uptake and metabolism of tumor cells in relation with glucose uptake, when comparing hypoxia and hypoxia-reoxigenation, could lead to a better dossymmetric planning taking account the variations on oxygen concentration into the tumor.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/4278

Idioma(s)

spa

Publicador

Facultad de medicina

Direitos

info:eu-repo/semantics/embargoedAccess

Fonte

instname:Universidad del Rosario

reponame:Repositorio Institucional EdocUR

Allen, M. & Louise Jones, J., 2011. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. The Journal of pathology, 223(2), pp.162–76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21125673 [Accessed July 26, 2012].

Aristophanous, M. et al., 2012. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning. International journal of radiation oncology, biology, physics, 82(1), pp.e99–105. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21377285 [Accessed October 13, 2012].

Arvold, N.D. et al., 2005. Hypoxia-induced radioresistance is independent of hypoxia-inducible factor-1A in vitro. International journal of radiation oncology, biology, physics, 62(1), pp.207–12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15850923 [Accessed August 15, 2012].

Barton, M.B., Frommer, M. & Shafiq, J., 2006. Role of radiotherapy in cancer control in low-income and middle-income countries. The lancet oncology, 7(7), pp.584–95. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16814210.

Bertout, J. a, Patel, S. a & Simon, M.C., 2008. The impact of O2 availability on human cancer. Nature reviews. Cancer, 8(12), pp.967–75. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3140692&tool=pmcentrez&rendertype=abstract.

Brahimi-Horn, M.C., Chiche, J. & Pouysségur, J., 2007a. Hypoxia and cancer. Journal of molecular medicine (Berlin, Germany), 85(12), pp.1301–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18026916 [Accessed July 19, 2012].

Brahimi-Horn, M.C., Chiche, J. & Pouysségur, J., 2007b. Hypoxia signalling controls metabolic demand. Current opinion in cell biology, 19(2), pp.223–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17303407 [Accessed July 19, 2012].

Busk, M. et al., 2008. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. European journal of nuclear medicine and molecular imaging, 35(12), pp.2294–303. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18682937 [Accessed October 13, 2012].

Cairns, R. a, Harris, I.S. & Mak, T.W., 2011. Regulation of cancer cell metabolism. Nature reviews. Cancer, 11(2), pp.85–95. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21258394 [Accessed July 13, 2012].

Christian, N. et al., 2010. Is (18)F-FDG a surrogate tracer to measure tumor hypoxia? Comparison with the hypoxic tracer (14)C-EF3 in animal tumor models. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 97(2), pp.183–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20304513 [Accessed October 13, 2012].

Dewhirst, M.W. et al., 2007. Exploring the role of HIF-1 in early angiogenesis and response to radiotherapy. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 83(3), pp.249–55. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2694841&tool=pmcentrez&rendertype=abstract [Accessed October 15, 2012].

Dewhirst, M.W., 2009. Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiation research, 172(6), pp.653–65. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2790140&tool=pmcentrez&rendertype=abstract [Accessed October 21, 2012].

Dewhirst, M.W., Cao, Y. & Moeller, B., 2008. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature reviews. Cancer, 8(6), pp.425–37. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18500244 [Accessed July 19, 2012].

Edited By Celis, J.E., 2006. CELL BIOLOGY A LABORATORY HANDBOOK 3rd ed. J. E. Celis, ed., ELSEVIER.

Farmer, P. et al., 2010. Expansion of cancer care and control in countries of low and middle income: a call to action. Lancet, 376(9747), pp.1186–93. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20709386 [Accessed October 8, 2012].

Gatenby, R. a & Gillies, R.J., 2004. Why do cancers have high aerobic glycolysis? Nature reviews. Cancer, 4(11), pp.891–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15516961 [Accessed July 13, 2012].

Goldberg, M.A., Dunning, S.P. & Bunn, H.F., 1988. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science (New York, N.Y.), 242(4884), pp.1412–5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2849206 [Accessed October 14, 2012].

Gregoire, V. & Chiti, A., 2010. PET in radiotherapy planning: particularly exquisite test or pending and experimental tool? Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 96(3), pp.275–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20708810 [Accessed October 13, 2012].

Halestrap, A.P. & Price, N.T., 1999. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. The Biochemical journal, 343 Pt 2, pp.281–99. Available at: http://www.sciencedirect.com/science/article/pii/S0955067497800683 [Accessed October 25, 2012].

Hall D.Phil, Eric J. Giaccia, A.J., 2006. Radiobiology for the Radiologist 6th ed., Lippincott Williams & Wilkins.

Hanahan, D & Folkman, J., 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86(3), pp.353–64. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8756718.

Hanahan, Douglas & Weinberg, R. a, 2011. Hallmarks of cancer: the next generation. Cell, 144(5), pp.646–74. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21376230 [Accessed July 12, 2012].

Hanahan, Douglas & Weinberg, R.A., 2000. The hallmarks of cancer. Cell, 100(1), pp.57–70. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10647931 [Accessed October 4, 2012].

Hassanein, M. et al., 2011. Development of high-throughput quantitative assays for glucose uptake in cancer cell lines. Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging, 13(5), pp.840–52. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20809209 [Accessed September 17, 2012].

Instituto Nacional de Cancerología, I., 2010. Mortalidad Nacional por tipo de Cáncer. Available at: http://www.cancer.gov.co/documentos/Mortalidad/Mor.

Ke, Q. & Costa, M., 2006. Hypoxia-inducible factor-1 (HIF-1). Molecular pharmacology, 70(5), pp.1469–80. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16887934 [Accessed October 29, 2012].

Kim, J., Gao, P. & Dang, C.V., 2007. Effects of hypoxia on tumor metabolism. Cancer metastasis reviews, 26(2), pp.291–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17415528 [Accessed October 15, 2012].

Kim, T., Hur, E. & Kang, S., 2011. NRF2 Blockade Suppresses Colon Tumor Angiogenesis by Inhibiting Hypoxia-Induced Activation of HIF-1 α. , pp.2260–2275.

Kizaka-Kondoh, S. et al., 2009. The HIF-1-active microenvironment: an environmental target for cancer therapy. Advanced drug delivery reviews, 61(7-8), pp.623–32. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19409433 [Accessed October 15, 2012].

Korreman, S. et al., 2010. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 94(2), pp.129–44. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20153908 [Accessed October 9, 2012].

Kurien, B.T. & Scofield, R.H., 2006. Western blotting. Methods (San Diego, Calif.), 38(4), pp.283–93. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16483794 [Accessed July 19, 2012].

Lau, A. et al., 2008. Dual roles of Nrf2 in cancer. Pharmacological research : the official journal of the Italian Pharmacological Society, 58(5-6), pp.262–70. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2652397&tool=pmcentrez&rendertype=abstract [Accessed August 10, 2012].

Lee, S. et al., 2012. An effective strategy for increasing the radiosensitivity of Human lung Cancer cells by blocking Nrf2-dependent antioxidant responses. Free radical biology & medicine, 53(4), pp.807–16. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22684019 [Accessed October 15, 2012].

Liu, W. et al., 2012. Targeted genes and interacting proteins of hypoxia inducible factor-1. International journal of biochemistry and molecular biology, 3(2), pp.165–78. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3388736&tool=pmcentrez&rendertype=abstract.

Magesh, S., Chen, Y. & Hu, L., 2012. Small Molecule Modulators of Keap1-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents *. , (4), pp.687–726.

Marín-Hernández, A. et al., 2011. Modeling cancer glycolysis. Biochimica et biophysica acta, 1807(6), pp.755–67. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21110941 [Accessed August 15, 2012].

McDonald, J.T. et al., 2010. Ionizing radiation activates the Nrf2 antioxidant response. Cancer research, 70(21), pp.8886–95. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2970706&tool=pmcentrez&rendertype=abstract [Accessed July 17, 2012].

Ministerio de la Protección Social, M.P.S. & Instituto Nacional de Cancerología, I., 2010. Plan nacional para el control del cáncer en Colombia 2010 - 2019. Available at: http://www.cancer.gov.co/contenido/contenido.aspx?conID=1061&catID=1 [Accessed July 15, 2012].

Moeller, B.J. et al., 2004. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer cell, 5(5), pp.429–41. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15144951.

Moi, P. et al., 1994. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proceedings of the National Academy of Sciences of the United States of America, 91(21), pp.9926–30. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=44930&tool=pmcentrez&rendertype=abstract.

Morgan, W.F. & Sowa, M.B., 2007. Non-targeted bystander effects induced by ionizing radiation. Mutation research, 616(1-2), pp.159–64. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17134726 [Accessed August 15, 2012].

Munshi, A., Hobbs, M. & Meyn, R.E., 2005. Clonogenic cell survival assay. Methods in molecular medicine, 110, pp.21–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15901923 [Accessed July 24, 2012].

Nakajima, E.C. & Van Houten, B., 2012. Metabolic symbiosis in cancer: Refocusing the Warburg lens. Molecular carcinogenesis, (November), pp.1–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22228080 [Accessed July 30, 2012].

Organización Mundial de la Salud, O., 2009. CENTRO DE PRENSA. CÁNCER, DATOS Y CIFRAS. , p.http://www.who.int/mediacentre/factsheets/fs297/es. Available at: http://www.who.int/mediacentre/factsheets/fs297/es [Accessed July 15, 2012].

Osburn, W.O. & Kensler, T.W., 2008. Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutation research, 659(1-2), pp.31–9. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2585047&tool=pmcentrez&rendertype=abstract [Accessed October 15, 2012].

O’Neil, R.G., Wu, L. & Mullani, N., 2005. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging, 7(6), pp.388–92. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16284704 [Accessed September 17, 2012].

Park, J.E. et al., 2010. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & cellular proteomics : MCP, 9(6), pp.1085–99. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2877972&tool=pmcentrez&rendertype=abstract [Accessed October 24, 2012].

Quintero, P., 2012. Estudio in vitro de la supervivencia en células tumorales irradiadas con un acelerador lineal de uso clínico. Universidad Nacional de Colombia.

Rzeszowska-Wolny, J., Przybyszewski, W.M. & Widel, M., 2009. Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy. European journal of pharmacology, 625(1-3), pp.156–64. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19835860 [Accessed August 15, 2012].

Rødningen, O.K. et al., 2005. Microarray analysis of the transcriptional response to single or multiple doses of ionizing radiation in human subcutaneous fibroblasts. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 77(3), pp.231–40. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16297999 [Accessed August 15, 2012].

Salud, O.M. de la, GLOBOCAN Cancer Incidence, Mortality and Prevalence Worldwide in 2008. , p.http://globocan.iarc.fr/factsheet.asp.

Sattler, B. et al., 2010. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 96(3), pp.288–97. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20709416 [Accessed October 13, 2012].

Semenza, G.L. et al., 1991. Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proceedings of the National Academy of Sciences of the United States of America, 88(13), pp.5680–4. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=51941&tool=pmcentrez&rendertype=abstract [Accessed October 14, 2012].

Semenza, G.L., 2003. Targeting HIF-1 for cancer therapy. Nature reviews. Cancer, 3(10), pp.721–32. Available at: http://www.ncbi.nlm.nih.gov/pubmed/13130303 [Accessed October 5, 2012].

Sonveaux, P. et al., Targeting lactate-fueled respiration as a new antitumor strategy. , (12), pp.13–16.

Sonveaux, P. et al., 2008. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of clinical investigation, 118(12), pp.3930–42. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2582933&tool=pmcentrez&rendertype=abstract [Accessed October 11, 2012].

Tsukimoto, M. et al., 2010. Low-Dose Gamma-Ray Irradiation Induces Translocation of Nrf2 Into Nuclear in Mouse Macrophage RAW264.7 Cells. Journal of Radiation Research, 51(3), pp.349–353. Available at: http://joi.jlc.jst.go.jp/JST.JSTAGE/jrr/10002?from=CrossRef [Accessed August 23, 2012].

Vaupel, P. & Mayer, A., 2007. Hypoxia in cancer: significance and impact on clinical outcome. Cancer metastasis reviews, 26(2), pp.225–39. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17440684 [Accessed July 14, 2012].

Vogin, G., 2011. [Radiosensitivity, radiocurability and DNA repair]. Cancer radiothérapie : journal de la Société française de radiothérapie oncologique, 15(4), pp.294–306. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21334945 [Accessed October 8, 2012].

Weizmann Institute of Science, W., 2012. Gene Cards. The Human Gene Compendium. Available at: http://www.genecards.org [Accessed June 24, 2012].

Wu, Q. et al., 2011. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(2), pp.153–158. Available at:

Xu, X. et al., 2008. Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer. Cancer letters, 261(2), pp.147–57. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18171602 [Accessed August 15, 2012].

Zaider, M. & Hanin, L., 2011. Tumor control probability in radiation treatment. Medical Physics, 38(2), p.574.

Palavras-Chave #CÁNCER – INVESTIGACIONES #CULTIVO DE CÉLULAS #FACTOR 2 RELACIONADO CON NF-E2 #HIPOXIA #NEOPLASMAS DE LA MAMA– INVESTIGACIONES #NEOPLASMAS DEL COLON – INVESTIGACIONES #TÉCNICAS DE COCULTIVO – UTILIZACIÓN #Hypoxia-reoxigenation #Warburg effect #Ionizing radiation #Breast and colon cancer #Coculture #HIF1a and NRF2 #Symbiosis
Tipo

info:eu-repo/semantics/masterThesis

info:eu-repo/semantics/acceptedVersion