Effect of Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles


Autoria(s): Rabanel, Jean-Michel; Faivre, Jimmy; Tehrani, Soudeh F.; Lalloz, Augustine; Hildgen, Patrice; Banquy, Xavier
Contribuinte(s)

Faculté de pharmacie

Data(s)

18/11/2015

31/12/1969

18/11/2015

01/05/2015

Resumo

Polymers made of poly(ethylene glycol) chains grafted to poly(lactic acid) chains (PEG-g-PLA) were used to produce stealth drug nanocarriers. A library of comb-like PEG-g-PLA polymers with different PEG grafting densities was prepared in order to obtain nanocarriers with dense PEG brushes at their surface, stability in suspension, and resistance to protein adsorption. The structural properties of nanoparticles (NPs) produced from these polymers by a surfactant-free method were assessed by DLS, zeta potential, and TEM and were found to be controlled by the amount of PEG present in the polymers. A critical transition from a solid NP structure to a soft particle with either a “micelle-like” or “polymer nano-aggregate” structure was observed when the PEG content was between 15 to 25% w/w. This structural transition was found to have a profound impact on the size of the NPs, their surface charge, their stability in suspension in presence of salts as well as on the binding of proteins to the surface of the NPs. The arrangement of the PEG-g-PLA chains at the surface of the NPs was investigated by 1H NMR and X-ray photoelectron spectroscopy (XPS). NMR results confirmed that the PEG chains were mostly segregated at the NP surface. Moreover, XPS and quantitative NMR allowed quantifying the PEG chain coverage density at the surface of the solid NPs. Concordance of the results between the two methods was found to be remarkable. Physical-chemical properties of the NPs such as resistance to aggregation in saline environment as well as anti-fouling efficacy were related to the PEG surface density and ultimately to polymer architecture. Resistance to protein adsorption was assessed by isothermal titration calorimetry (ITC) using lysozyme. The results indicate a correlation between PEG surface coverage and level of protein interactions. The results obtained lead us to propose such PEG-g-PLA polymers for nanomedecine development as an alternative to the predominant polyester-PEG diblock polymers.

Identificador

Rabanel, J.-M., Faivre, J., Tehrani, S.F., Lalloz, A., Hildgen, P., Banquy, X. (2015, May). Effect of polymer architecture on the structural and biophysical properties of PEG-PLA nanoparticles. ACS applied materials and interfaces, 7(19), 10374–10385.

1944-8244

1944-8252

http://hdl.handle.net/1866/12635

http://dx.doi.org/10.1021/acsami.5b01423

Idioma(s)

en

Relação

ACS applied materials and interfaces;Vol. 7, no 19

Palavras-Chave #Poly(lactic) acid #Poly(ethylene glycol) #Nanoparticle #Micellar particle #XPS #NMR #ITC
Tipo

Article