A virtual reality approach to the study of visually driven postural control in developing and aging humans


Autoria(s): Greffou, Selma
Contribuinte(s)

Faubert, Jocelyn

McKerral, Michelle

Data(s)

06/06/2014

31/12/1969

06/06/2014

03/03/2014

01/10/2013

Resumo

L'être humain utilise trois systèmes sensoriels distincts pour réguler le maintien de la station debout: la somesthésie, le système vestibulaire, et le système visuel. Le rôle de la vision dans la régulation posturale demeure peu connu, notamment sa variabilité en fonction de l'âge, du type développemental, et des atteintes neurologiques. Dans notre travail, la régulation posturale induite visuellement a été évaluée chez des participants au développement et vieillissement normaux âgés de 5-85 ans, chez des individus autistes (développement atypique) âgés de 12-33 ans, ainsi que chez des enfants entre 9-18 ans ayant subi un TCC léger. À cet effet, la réactivité posturale des participants en réponse à un tunnel virtuel entièrement immersif, se mouvant à trois niveaux de vélocité, a été mesurée; des conditions contrôles, où le tunnel était statique ou absent, ont été incluses. Les résultats montrent que la réactivité (i.e. instabilité) posturale induite visuellement est plus élevée chez les jeunes enfants; ensuite, elle s'atténue pour rejoindre des valeurs adultes vers 16-19 ans et augmente de façon linéaire en fonction de l'âge après 45 ans jusqu'à redevenir élevée vers 60 ans. De plus, à la plus haute vélocité du tunnel, les plus jeunes participants autistes ont manifesté significativement moins de réactivité posturale comparativement à leurs contrôles; cette différence n'était pas présente chez des participants plus âgés (16-33 ans). Enfin, les enfants ayant subi un TCC léger, et qui étaient initialement modérément symptomatiques, ont montré un niveau plus élevé d'instabilité posturale induite visuellement que les contrôles, et ce jusqu'à 12 semaines post-trauma malgré le fait que la majorité d'entre eux (89%) n'étaient plus symptomatiques à ce stade. En somme, cela suggère la présence d'une importante période de transition dans la maturation des systèmes sous-tendant l'intégration sensorimotrice impliquée dans le contrôle postural vers l'âge de 16 ans, et d'autres changements sensorimoteurs vers l'âge de 60 ans; cette sur-dépendance visuelle pour la régulation posturale chez les enfants et les aînés pourrait guider l'aménagement d'espaces et l'élaboration d'activités ajustés à l'âge des individus. De plus, le fait que l'hypo-réactivité posturale aux informations visuelles chez les autistes dépende des caractéristiques de l'environnement visuel et de l'âge chronologique, affine notre compréhension des anomalies sensorielles propres à l'autisme. Par ailleurs, le fait que les enfants ayant subi un TCC léger montrent des anomalies posturales jusqu'à 3 mois post-trauma, malgré une diminution significative des symptômes rapportés, pourrait être relié à une altération du traitement de l'information visuelle dynamique et pourrait avoir des implications quant à la gestion clinique des patients aux prises avec un TCC léger, puisque la résolution des symptômes est actuellement le principal critère utilisé pour la prise de décision quant au retour aux activités. Enfin, les résultats obtenus chez une population à développement atypique (autisme) et une population avec atteinte neurologique dite transitoire (TCC léger), contribuent non seulement à une meilleure compréhension des mécanismes d'intégration sensorimotrice sous-tendant le contrôle postural mais pourraient aussi servir comme marqueurs sensibles et spécifiques de dysfonction chez ces populations. Mots-clés : posture, équilibre, vision, développement/vieillissement sensorimoteur, autisme, TCC léger symptomatique, réalité virtuelle.

Maintaining upright stance is essential for the accomplishment of several goal-directed behaviors, such as walking. Humans use three distinct sensory systems to regulate their posture: the somatosensory, the vestibular and the visual systems. The role of vision in postural regulation remains poorly understood, notably its variability across the life-span, developmental type and neurological insult. Hence, visually-driven postural regulation was examined in typically developing and aging participants (5-85 years-old), as well as in atypically developing individuals with autism (12-33 years-old) and in children having sustained mTBI (9-18 years-old). In order to do so, participants' postural reactivity was assessed in response to a fully immersive virtual tunnel moving at 3 different velocities; control conditions were also included wherein the tunnel was either static or absent. Results show that visually-induced postural reactivity was strongest in young children, then attenuated to become adult-like between 16-19 years of age, and started increasing again linearly with age after 45 years until becoming strong again around 60 years. Moreover, at the highest tunnel velocity, younger autistic participants showed significantly less postural reactivity compared to age-matched controls and young adults (16-33 years-old). Finally, children having sustained mTBI, who were initially moderately symptomatic, exhibited increased visually-induced instability compared to their matched controls up to 12 weeks post-injury, although most of them (89%) were no longer highly symptomatic. Altogether, this suggests the presence of an important transition period for the maturation of the systems underlying sensorimotor integration in postural control at around 16 years of age, and further sensorimotor changes after 60 years of age; this over-reliance on vision for postural regulation in childhood and late adulthood could guide the design of age-appropriate facilities/ activities. Furthermore, the fact that postural hypo-reactivity to visual information present in autism is contingent on both the visual environment and on chronological age, enhances our understanding of autism-specific sensory anomalies. Additionally, the fact that children with mTBI show balance anomalies up to 3 months post-injury, even when they are no longer highly symptomatic may be related to altered processing of dynamic visual information and could have implications for the clinical management of mTBI patients, since symptoms resolution is commonly used as a criterion for return to activities. Finally, results stemming from populations with atypical development (autism) and with so-called transient neurological insult (mild TBI) not only contribute to enhance our understanding of sensorimotor integration mechanisms underlying postural control, but could also consist of sensitive and specific markers of dysfunction in these populations. Keywords : posture, balance, vision, sensorimotor development/ aging, autism, symptomatic mTBI, virtual reality.

Identificador

http://hdl.handle.net/1866/10815

Idioma(s)

en

Palavras-Chave #Posture #Balance #Vision #Sensorimotor development #Sensorimotor aging #Autism #TBI #Virtual reality #Équilibre #Autisme #TCC #Réalité virtuelle #Développement sensorimoteur #Vieillissement sensorimoteur #Psychology - Developmental / Psychologie du développement (UMI : 0620)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation