HIV-1 Vpr induces the K48-linked polyubiquitination and proteasomal degradation of target cellular proteins to activate ATR and promote G2 arrest


Autoria(s): Belzile, J.-P.; Richard, Jonathan; Rougeau, N.; Xiao, Y.; Cohen, É.A.
Data(s)

19/12/2010

31/12/1969

19/12/2010

2010

Resumo

HIV-1 viral protein R (Vpr) induces a cell cycle arrest at the G2/M phase by a mechanism involving the activation of the DNA damage sensor ATR. We and others recently showed that Vpr performs this function by subverting the activity of the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. Vpr could thus act as a connector between the E3 ligase and an unknown cellular factor whose ubiquitination would induce G2 arrest. While attractive, this model is solely based on the indirect observation that some mutants of Vpr retain their interaction with the E3 ligase but fail to induce G2 arrest. Using a tandem affinity purification approach, we observed that Vpr interacts with ubiquitinated cellular proteins and that this association requires the recruitment of an active E3 ligase given that depletion of VPRBP by RNA interference or overexpression of a dominant-negative mutant of CUL4A decreased this association. Importantly, G2-arrest-defective mutants of Vpr in the C-terminal putative substrate-interacting domain displayed decreased association with ubiquitinated proteins. We also found that inhibition of proteasomal activity increased this association and that the ubiquitin chains were at least in part constituted of classical K48 linkages. Interestingly, inhibition of K48 polyubiquitination specifically impaired Vpr-induced phosphorylation of H2AX, an early target of ATR, but did not affect UV-induced H2AX phosphorylation. Overall, our results provide direct evidence that association of Vpr with the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase induces the K48-linked polyubiquitination of yet-unknown cellular proteins resulting in their proteasomal degradation and ultimately leading to activation of ATR and G2 arrest.

JPB and JR are recipients of studentships from the Canadian Institute of Health Research (CIHR). EAC is recipient of the Canada Research Chair in Human Retrovirology. This work was supported by grants from CIHR and FRSQ to EAC.

Identificador

Belzile, J.-P., Richard, J., Rougeau, N., Xiao, Y., Cohen, É.A. "HIV-1 Vpr induces the K48-linked polyubiquitination and proteasomal degradation of target cellular proteins to activate ATR and promote G2 arrest". Journal of Virology, 84(7): 3320-3330, 2010.

http://dx.doi.org/10.1128/JVI.02590-09

http://hdl.handle.net/1866/4483

Idioma(s)

en

Tipo

Article