Chemoenzymatic Total Synthesis of Morphine alkaloids: Synthesis of Dihydrocodeine and Hydrocodone via a Double Claisen Strategy and ent-Hydromorphone via an Oxidative Dearomatization/intramolecular [4+2] Cycloaddition


Autoria(s): Varghese, Vimal
Contribuinte(s)

Department of Chemistry

Data(s)

15/01/2015

15/01/2015

15/01/2015

Resumo

This thesis describes the chemoenzymatic synthesis of three morphine alkaloids. The total synthesis of dihydrocodeine and hydrocodone was accomplished starting from bromobenzene in 16 and 17 steps, respectively. The key steps included a microbial oxidation of bromobenzene by E. coli JM109 (pDTG601A), a Kazmaier-Claisen rearrangement of glycinate ester to generate C-9 and C-14 stereo centers, a Johnson-Claisen rearrangement to set the C-13 quaternary center, and a C-10/C-11 ring closure via a Friedel-Crafts reaction. In addition, the total synthesis of ent-hydromorphone starting from β-bromoethylbenzene in 12 steps is also described. The key reactions included the enzymatic dihydroxylation of β-bromoethylbenzene to the corresponding cis-cyclohexadienediol, a Mitsunobu reaction, and an oxidative dearomatization followed by an intramolecular [4+2] cycloaddition.

Identificador

http://hdl.handle.net/10464/5980

Idioma(s)

eng

Publicador

Brock University

Palavras-Chave #Total synthesis #Chemoenzymatic #Natural product #Morphine alkaloids
Tipo

Electronic Thesis or Dissertation