mRNA metabolism: nonsense mediated mRNA decay as a tool for gene therapy and the role of human DIS3L2 in transcript degradation


Autoria(s): Amaral, Gerson Leonel Asper
Contribuinte(s)

Romão, Luísa Maria Ferreira

Dias, Deodália Maria Antunes,1952-

Data(s)

24/05/2016

24/05/2016

2015

2015

Resumo

Tese de mestrado em Biologia Humana e Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015

A expressão génica nos eucariotas envolve uma série de passos interligados e acoplados entre si, tendo a molécula de RNA (ribonucleic acid) como mensageiro entre os grandes passos. Resumidamente, a mensagem codificada pelas bases nucleotídicas do ácido desoxirribonucleico (DNA) (deoxyribonucleic acid) é transferida para uma molécula de RNA (transcrição), que, após processamento no núcleo, é transferida para o citoplasma onde é lida e transformada numa cadeia polipeptídica (tradução). Por vezes, contudo, podem ocorrer erros, em qualquer uma das fases da expressão, erros esses que podem resultar em mRNAs aberrantes que, se forem traduzidos, podem dar origem a proteínas truncadas com possíveis efeito deletérios. Para contornar este problema, as células eucarióticas desenvolveram mecanismos de controlo de qualidade do mRNA de modo a assegurarem a fidelidade da expressão génica através da detecção e degradação de transcritos aberrantes. O decaimento do mRNA mediado por mutações nonsense (NMD; Nonsense-mediated mRNA decay) é o mais conhecido, detecta e degrada transcritos que contêm codões de terminação prematuros (CTPs). O decaimento nonstop (NSD; Nonstop mRNA decay) detecta e degrada transcritos que não possuem codões de terminação em fase na grelha de leitura, mas existem outros, como o NGD (No-go decay) que evoluiu para lidar com os transcritos que possuem uma qualquer mutação que impeça a normal elongação da tradução. O NMD em particular, é um mecanismo de vigilância conservado em todas as células eucarióticas e é também o mais estudado. Os mRNAs que contêm CTPs poderiam dar origem, sem o NMD, a proteínas truncadas na extremidade C-terminal tóxicas para a célula, que podem adquirir um ganho de função prejudicial ou um efeito dominante-negativo. A importância fisiológica do NMD é ainda adicionalmente demonstrada pelo facto de que cerca de um terço das doenças genéticas associadas a doenças gerarem CTPs. Recentemente, alguns estudos têm vindo a demonstrar que compostos de baixo peso molecular, aminoglicósidos e não-aminoglicósidos podem suprimir CTPs em contexto de fibrose cística, distrofia muscular de Duchenne e difeciência em carnitina palmitoltransferase 1A como uma nova abordagem terapêutica, a terapia de supressão, a qual usa estes compostos para induzir a recodificação de um codão nonsense num codão sense. Uma doença também associada a mutações nonsense é a β-talassémia. A β-talassémia é uma das doenças genéticas mais comuns no mundo e cujo tratamento para os fenótipos mais agressivos requer inevitavelmente transfusões regulares sanguíneas, com os riscos que isso acarreta como a acumulação excessiva de ferro no organismo. Uma cura que se possa chamar definitiva ainda não existe e, portanto, qualquer nova abordagem terapêutica constitui uma mais valia. O NMD é um modelador do fenótipo da β-talassémia, podendo contribuir para o melhoramento das manifestações da doença. Em relação à terapia de supressão, permanece ainda por esclarecer se a β-talassémia responderia também à mesma. Alguns estudos recentes mostram resultados positivos para o composto PTC124 (ou Ataluren) na supressão de mutações nonsense no gene da CFTR (associadas à Fibrose Cística) bem como noutros genes, associados à Distorifia Muscular de Duchenne, Síndrome de Usher e Defeciência em Carnitina Palmitoltransferase 1C; para além disso, resultados obtidos previamente pelo nosso laboratório demonstraram que o aminoglicósido G418 pode suprimir uma mutação nonsense no codão 39 do mRNA do gene da β-globina humana, embora a baixos níveis em células eritróides em cultura. Tendo em conta esta informação, como uma primeira parte deste trabalho, decidimos investigar se a terapia de supressão pode restaurar β-globina suficiente para conseguir corrigir as manifestações da β-talassémia. Propusémo-nos a testar se o G418 e/ou o PTC124 seriam capazes de induzir níveis suficientes de supressão, duma maneira dependente da dose, em células HeLa transfectadas com plasmídeos que contêm o gene da β-globina humana, variante selvagem, wild type (βWT), ou as outras variantes contendo uma mutação nonsense no codão 15 (β15) ou 39 (β39). Contudo, não fomos bem sucedidos nesta primeira parte do projecto devido a dificuldades intransponíveis associadas à clonagem de genes. O próximo passo para os RNAs sinalizados pelas maquinarias do NMD ou do NSD, bem como os RNAs normais, que não se acumulam indefinidamente, é a degradação. A degradação é, na verdade, uma parte essencial do metabolismo do mRNA, constituindo até um mecanismo pelo qual a expressão génica é regulada. Na degradação do mRNA, o exossoma é um componente essencial. O exossoma eucariótico é um complexo ribonucleolítico multi-subunidade, e é responsável pela degradação na direcção 3’-5’ de todos os tipos de RNA na célula, entre outras coisas. As proteínas humanas Dis3 ou Dis3L1 são os seus elementos catalíticos. Contudo, outra ribonuclease foi também identificada, a Dis3L2, da qual pouco ainda se sabe, especialmente em humanos. Pensa-se que esta proteína seja uma ribonuclease citoplasmática na direcção 3’-5’, independente do exossoma, que parece ter especial afinidade para transcritos uridilados. Tendo em conta as lacunas no conhecimento acerca da Dis3L2 humana (hDis3L2) e da importância dos mecanismos de vigilância do mRNA e da sua degradação, decidimos avaliar a possibilidade da Dis3L2 humana estar efectivamente envolvida nas vias de degradação do mRNA NMD e/ou NSD. Para esse efeito, foram efectuadas experiências de silenciamento do gene da Dis3L2 humana recorrendo à tecnologia de RNA de interferência, mais especificamente siRNAs (small interfering RNAs) em células HeLa transfectadas com plasmídeos contendo a variante selvagem do gene da β-globina humana (βWT), com as variantes contendo uma mutação nonsense no codão 15 (β15), 26 (β26) ou 39 (β39), e também a variante que não contém um codão de terminação na grelha de leitura, nonstop, (βNS). Seguidamente avaliámos os níveis celulares de mRNA da β-globina humana, bem como os do HFE, que é um alvo natural do NMD. Os nossos resultados sugerem que a hDis3L2 está envolvida no NMD, NSD e possivelmente também na degradação de transcritos normais e consequentemente no turnover do RNA.

Eukaryotic cells have developed elaborate mechanisms of mRNA quality control that secure gene expression fidelity through the detection and degradation of abnormal transcripts. NMD (nonsense-mediated mRNA decay), which detects and degrades transcripts containing premature translation termination codons (PTCs), and NSD (nonstop mRNA decay), that detects and degrades transcripts without in-frame stop codons, are just two examples. Nonsense-mediated mRNA decay (NMD) in particular, is a conserved surveillance system in all eukaryotic cells and is also the most extensively studied. PTC-containing mRNAs could, without NMD, give rise to C-terminally truncated proteins toxic for the cell. The physiological importance of NMD is further manifested by the fact that about one third of genetic disease-associated mutations generate PTCs. Recently, some studies have shown that aminoglycosides, low molecular weight compounds, and non-aminoglycosides can suppress PTCs in cystic fibrosis, Duchenne’s muscular dystrophy others, as a novel therapeutic approach, suppression therapy, which uses these compounds to induce recoding of a PTC into a sense codon. It is unclear whether β-thalassaemia would also be responsive to suppression therapy. Some recent studies show positive results for the compound PTC124 in suppressing nonsense mutations in the CFTR gene and others; also preliminary results obtained in our lab have shown that the aminoglycoside G418 can suppress a nonsense mutation at codon 39 of the human β-globin mRNA, although at low levels in cultured erythroid cells. As a first part of this work, we decided to investigate if suppression therapy can restore enough β-globin protein to correct the disease manifestations of β-thalassaemia. We intended to test whether G418 and/or PTC124 were able to induce efficient levels of suppression in a dose-dependent manner in HeLa cells transfected with plasmids containing the human β-globin wild type gene (βWT) or the other variants carrying a nonsense mutation at codon 15 (β15) or 39 (β39). However, we weren’t successful in this approach due to difficulties in gene cloning. The next step for RNAs targeted by NMD or NSD, as well as normal transcripts, which don’t accumulate indefinitely, is degradation. Generally the exosome complex, a multi-subunit ribonuclease complex, is responsible for the 3’-5’ degradation of every type of RNA in the cell, with its main catalytic component being either Dis3 or Dis3L1 in humans. However, another ribonuclease has been identified: DIS3L2. This protein is thought to be a cytoplasmic exosome-independent 3’-5’ ribonuclease, with special affinity for urydilated transcripts. Nonetheless, not much else is known for certain about its activity, especially in humans, including if it is coupled to NMD or NSD mRNA degradation. As a consequence, we intended to evaluate hDIS3L2’s possible involvement in mRNA degradation pathways, by performing knockdown of hDIS3L2, with siRNAs (small-interfering RNAs) in HeLa cells transfected with plasmids containing the human β-globin wild type gene (βWT), the variants carrying a nonsense mutation at codon 15 (β15), 26 (β 26) or 39 (β39), and also a variant lacking an in-frame stop codon (nonstop) (βNS). We then evaluated the human β-globin mRNA levels, as well as HFE’s, which is an NMD natural target. Our results show that human DIS3L2 is involved in NMD, NSD and possibly normal transcript degradation (mRNA turnover).

Identificador

http://hdl.handle.net/10451/23790

Idioma(s)

eng

Direitos

openAccess

Palavras-Chave #Decaimento do mRNA mediado por mutações nonsense (NMD) #Decaimento do mRNA nonstop (NSD) #G418 #PTC124 #hDIS3L2 #Teses de mestrado - 2015 #Domínio/Área Científica::Ciências Naturais::Ciências Biológicas
Tipo

masterThesis