Electrospun medicated shellac nanofibers for colon-targeted drug delivery


Autoria(s): Wang, X.; Yu, D.G.; Li, X.-Y.; Bligh, S.W.A.; Williams, G.R.
Data(s)

25/07/2015

Resumo

Medicated shellac nanofibers providing colon-specific sustained release were fabricated using coaxial electrospinning. A solution of 7.5 g shellac and 1.5 g of ferulic acid (FA) in 10 mL ethanol was used as the core fluid, and a mixture of ethanol and N,N-dimethylformamide (8/10 v/v) as the shell. The presence of the shell fluid was required to prevent frequent clogging of the spinneret. The diameters of the fibers (D) can be manipulated by varying the ratio of shell to core flow rates (F), according to the equation D = 0.52F−0.19. Scanning electron microscopy images revealed that fibers prepared with F values of 0.1 and 0.25 had linear morphologies with smooth surfaces, but when the shell fluid flow rate was increased to 0.5 the fiber integrity was compromised. FA was found to be amorphously distributed in the fibers on the basis of X-ray diffraction and differential scanning calorimetry results. This can be attributed to good compatibility between the drug and carrier: IR spectra indicated the presence of hydrogen bonds between the two. In vitro dissolution tests demonstrated that there was minimal FA release at pH 2.0, and sustained release in a neutral dissolution medium. The latter occurred through an erosion mechanism. During the dissolution processes, the shellac fibers were gradually converted into nanoparticles as the FA was freed into solution, and ultimately completely dissolved.

Identificador

http://westminsterresearch.wmin.ac.uk/15574/1/Bligh_etal_IntlJnlPhar_2015.pdf

Wang, X., Yu, D.G., Li, X.-Y., Bligh, S.W.A. and Williams, G.R. (2015) Electrospun medicated shellac nanofibers for colon-targeted drug delivery. International Journal of Pharmaceutics, 490 (1-2). pp. 384-390. ISSN 0378-5173

Publicador

Elsevier

Relação

http://westminsterresearch.wmin.ac.uk/15574/

https://dx.doi.org/doi:10.1016/j.ijpharm.2015.05.077

doi:10.1016/j.ijpharm.2015.05.077

Palavras-Chave #Science and Technology
Tipo

Article

PeerReviewed

Formato

application/pdf

Idioma(s)

en