Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics


Autoria(s): Horsfield, A.P.; Bowler, D.R.; Fisher, A.J.; Todorov, Tchavdar; Montgomery, Malachy
Data(s)

02/05/2004

Resumo

Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested.

Identificador

http://pure.qub.ac.uk/portal/en/publications/power-dissipation-in-nanoscale-conductors-classical-semiclassical-and-quantum-dynamics(e502e4a0-e92f-4526-b740-9db013fdaa96).html

http://dx.doi.org/10.1088/0953-8984/16/21/010

http://www.scopus.com/inward/record.url?scp=2942530580&partnerID=8YFLogxK

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Horsfield , A P , Bowler , D R , Fisher , A J , Todorov , T & Montgomery , M 2004 , ' Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics ' Journal of Physics: Condensed Matter , vol 16 , no. 21 , pp. 3609-3622 . DOI: 10.1088/0953-8984/16/21/010

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2500/2504 #Electronic, Optical and Magnetic Materials #/dk/atira/pure/subjectarea/asjc/3100/3104 #Condensed Matter Physics
Tipo

article