Equilibria and Dynamics of a Neural Network Model for Opponent Muscle Control


Autoria(s): Bullock, Daniel; Contreras-Vidal, José L.; Grossberg, Stephen
Data(s)

14/11/2011

14/11/2011

01/02/1992

Resumo

One of the advantages of biological skeleto-motor systems is the opponent muscle design, which in principle makes it possible to achieve facile independent control of joint angle and joint stiffness. Prior analysis of equilibrium states of a biologically-based neural network for opponent muscle control, the FLETE model, revealed that such independent control requires specialized interneuronal circuitry to efficiently coordinate the opponent force generators. In this chapter, we refine the FLETE circuit variables specification and update the equilibrium analysis. We also incorporate additional neuronal circuitry that ensures efficient opponent force generation and velocity regulation during movement.

National Science Foundation (IRI-90-24877); Consejo Nacional de Ciencia y Tecnologia, México

Identificador

http://hdl.handle.net/2144/2097

Idioma(s)

en_US

Publicador

Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems

Relação

BU CAS/CNS Technical Reports;CAS/CNS-TR-1992-017

Direitos

Copyright 1992 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.

Boston University Trustees

Tipo

Technical Report