改造型盆地油气成藏机理与油气预测-以银根-额济纳旗盆地为例


Autoria(s): 王新民
Contribuinte(s)

信荃麟

Data(s)

2001

Resumo

Reformed basin is a basin that underwent multiple immense reformation after the sedimentary stage, the major geologic elements of the petroleum system in the prototyped basin are destroyed to a certain extent, and their petroleum system has been reconstructed. This type of basin is frequently found in the course of exploration both home and abroad. In China, especially in the western and southern part of China, the basins in which oil explorations have been conducted are mostly reformed basins. The reformed basins from Paleozoic, Late Mesozoic to Cenozoic are widely distributed in West and South China. They are, and moreover, will be a challenge for oil and gas exploration. The conventional investigation and exploration techniques used in the slightly reconstructed basin just don't work well when facing the reformed basin. Therefore, the study on the reformed basin, especially the study on the pool-forming mechanism and reservoir prediction becomes a focus and one of difficulties for the geologists overseas and domestic. Yingen-Ejinaqi Basin is a typical case of the Late Mesozoic and Cenozoic reformed basins in China. It locates in West China and is a exploration frontier with difficulties and no break through is made for years. A comprehensive research on it will be of significance for oil and gas exploration in similar basins of China. The late research for reformed basin in China now is mainly concentrated on basin classification, formation mechanism, geologic features, and survey technique, distribution regularity of oil accumulation and its dominating factors, assessment of oil exploration prospect and target zones, etc. On the other hand, the study on the pool-forming mechanism and reservoir prediction seems insufficient in systematization, and the research is deficient in methodology and combination of qualitative and quantitative studies, as well as the application of the new theory and techniques. The current efforts are mainly directed to structures (faults), sedimentation, the relationship between reservoir evolution and oil accumulation, and some other relevant fields. However, the application of the new theory and techniques seems to be insufficient such as petroleum system, pool-forming dynamics, fluid pressure compartment, and basin simulation, etc. So is the dynamic and integrated research. As a result, incomplete knowledge and understandings derived from the research on pool-forming mechanism and reservoir prediction often do not accord with rea-lity of the basin. The study and exploration under the guidance of this knowledge will inevitably lead to errors and failure. This paper, based on the previous study of the other geologists on reformed basins, with emphasis on "wholeness or systematic, dynamic and integrated" research, presents a reverse thinking of beginning from conserved units in the basin and the combination of qualitative and quantitative study with new theory and technique by building a geological model. The paper also puts forward a new thought for studying the oil & gas accumulation and reservoir prediction , and establishes a new research system for reformed basin. It is verified by the known reservoir and oil accumulation area in the basin and has a practical value for use and reference. The new ideas and achievements in this research are as following: 1.This is the first time that the system for studying the reformed basin and its pool-forming mechanism and reservoir prediction is presented. A reverse thinking and combination of qualitative & quantitative are applied here with emphasis on "wholeness or systematic, dynamic and integrated" research, new theory, techniques & methods comprehensive use and geologic models building. 2. Identifying criterion and methods, classifying schemes, and denominating principles for the conserved units of reformed basins are presented in this paper. The geologic model of conserved units of Yingen-Ejinaqi Basin has been built. It is a practical method when combined with the traditional way for basin survey and the conserved units study. 3.The dynamic sources of basin deformation are believed to be stress, gravity and thermodynamics. The stress and gravity are key factors in basin deformation and pool forming, especially stress. Scientific proof is provided by classifying the functional type, style and range of the stress, gravity and thermodynamics. 4.The pool forming and reservoir distribution of Yingen-Ejinaqi Basin are controlled by multiple factors or geologic conditions or/and co-controlled by both of them. The qualitative and quantitative research on petroleum system and basin modeling will help us understand and determine the pool-forming period of the conserved unit (timing), the oil migrating direction (orientation), the oil accumulating region (location), the oil distributing border (bordering) and the size of oil accumulation (quantification). Thus the pool-forming and distribution zones can be predicted. 5.Three generating modes (reform-succession type, reform-destroyed type and reform-regenerating type or reform-newborn type) of pool forming for reformed basins are presented here, together with the inner relationships between basin deformation type, overlapping style and pool-forming modes. The pool-forming modes are determined by deformation type and overlapping style. Reservoir distribution will be predicted based on the modes and other concrete pool-forming conditions. 6.The evaluation methods of the conserved units and zones and the parameter selection are reliable in optimal selecting of target zones. The technical terms, new ideas and methods for the study of reformed basins, the pool-forming mechanism and reservoir prediction are presented in this paper. The concepts and terms, the identifying criterion, the denominating principles, the generating modes for pool forming, the methods of reservoir prediction, and the evaluation techniques for conserved units and zones can be used for reference in studies on the petroleum exploration of reformed basins in China and abroad. It serves as a typical example for further research of the reformed basins and the geologic regulations of oil accumulation. It has a practical value of use and reference. The future research in the field of pool-forming mechanism of the reformed basins may well be on the process simulation of pool-forming dynamics of the reformed basins. Experimental work has been conducted to simulate the processes by using quantitative and qualitative methods combined. The further study in this field calls for more efforts.

Identificador

http://159.226.119.211/handle/311031/1842

http://www.irgrid.ac.cn/handle/1471x/174557

Idioma(s)

中文

Fonte

改造型盆地油气成藏机理与油气预测-以银根-额济纳旗盆地为例.王新民[d].中国科学院地质与地球物理研究所,2001.20-25

Palavras-Chave #改造型盆地 #银根-额济纳旗盆地 #油气成藏机理 #油气预测
Tipo

学位论文