Construction and evaluation of DNA vaccines encoding Edwardsiella tarda antigens


Autoria(s): Jiao, Xu-dong; Zhang, Min; Hu, Yong-hua; Sun, Li
Data(s)

20/08/2009

Resumo

Edwardsiella tarda is an opportunistic pathogen that can infect humans, animal, and fish. Two E. tarda antigens, Eta6 and FliC, which are homologues to an ecotin precursor and the FliC flagellin, respectively, were identified by in vivo-induced antigen technology from a pathogenic E. tarda strain isolated from diseased fish. When used as a subunit vaccine, purified recombinant Eta6 was moderately protective against lethal challenge of E. tarda in a Japanese flounder model, whereas purified recombinant FliC showed no apparent immunciprotectivity. Similarly, DNA vaccines based on eta6 and fliC in the form of plasmids pEta6 and pFliC induced, respectively, moderate and marginal protection against E. tarda infection. To improve the vaccine efficacy of eta6, a chimeric DNA vaccine, pCE6, was constructed, which encodes Eta6 fused in-frame to FliC. pCE6 was found to induce significantly higher level of protection than pEta6. Likewise, another chimeric DNA vaccine, pCE18, which expresses FliC fused to a previously identified E. tarda antigen Et18, elicited significantly stronger protective immunity than the DNA vaccine based on et18 alone. Fish immunized with pEta6 and pCE6 produced specific serum antibodies and exhibited significantly enhanced expression of the genes encoding elements that are involved in both innate and adaptive immune responses. Furthermore, the induction magnitudes of most of these genes were significantly higher in pCE6-vaccinated fish than in pEta6-vaccinated fish. (C) 2009 Elsevier Ltd. All rights reserved.

Edwardsiella tarda is an opportunistic pathogen that can infect humans, animal, and fish. Two E. tarda antigens, Eta6 and FliC, which are homologues to an ecotin precursor and the FliC flagellin, respectively, were identified by in vivo-induced antigen technology from a pathogenic E. tarda strain isolated from diseased fish. When used as a subunit vaccine, purified recombinant Eta6 was moderately protective against lethal challenge of E. tarda in a Japanese flounder model, whereas purified recombinant FliC showed no apparent immunciprotectivity. Similarly, DNA vaccines based on eta6 and fliC in the form of plasmids pEta6 and pFliC induced, respectively, moderate and marginal protection against E. tarda infection. To improve the vaccine efficacy of eta6, a chimeric DNA vaccine, pCE6, was constructed, which encodes Eta6 fused in-frame to FliC. pCE6 was found to induce significantly higher level of protection than pEta6. Likewise, another chimeric DNA vaccine, pCE18, which expresses FliC fused to a previously identified E. tarda antigen Et18, elicited significantly stronger protective immunity than the DNA vaccine based on et18 alone. Fish immunized with pEta6 and pCE6 produced specific serum antibodies and exhibited significantly enhanced expression of the genes encoding elements that are involved in both innate and adaptive immune responses. Furthermore, the induction magnitudes of most of these genes were significantly higher in pCE6-vaccinated fish than in pEta6-vaccinated fish. (C) 2009 Elsevier Ltd. All rights reserved.

Identificador

http://ir.qdio.ac.cn/handle/337002/2929

http://www.irgrid.ac.cn/handle/1471x/166119

Idioma(s)

英语

Fonte

Jiao, Xu-dong; Zhang, Min; Hu, Yong-hua; Sun, Li.Construction and evaluation of DNA vaccines encoding Edwardsiella tarda antigens,VACCINE,2009,27(38):5195-5202

Palavras-Chave #Immunology; Medicine, Research & Experimental #Adjuvant #DNA vaccine #Edwardsiella tarda #Flagellin #Subunit vaccine
Tipo

期刊论文