Spallation analysis with a closed trans-scale formulation damage evolution


Autoria(s): Wang HY(汪海英); Bai YL(白以龙); Xia MF(夏蒙棼); Ke FJ(柯孚久)
Data(s)

2004

Resumo

A closed, trans-scale formulation of damage evolution based on the statistical microdamage mechanics is summarized in this paper. The dynamic function of damage bridges the mesoscopic and macroscopic evolution of damage. The spallation in an aluminium plate is studied with this formulation. It is found that the damage evolution is governed by several dimensionless parameters, i.e., imposed Deborah numbers De* and De, Mach number M and damage number S. In particular, the most critical mode of the macroscopic damage evolution, i.e., the damage localization, is deter-mined by Deborah number De+. Deborah number De* reflects the coupling and competition between the macroscopic loading and the microdamage growth. Therefore, our results reveal the multi-scale nature of spallation. In fact, the damage localization results from the nonlinearity of the microdamage growth. In addition, the dependence of the damage rate on imposed Deborah numbers De* and De, Mach number M and damage number S is discussed.

Identificador

http://dspace.imech.ac.cn/handle/311007/15822

http://www.irgrid.ac.cn/handle/1471x/511

Idioma(s)

英语

Palavras-Chave #力学
Tipo

期刊论文