Effect of Grain Size on Structural and Magnetic Properties of CuFe2O4 Nanograins Synthesized by Chemical Co-Precipitation


Autoria(s): Hoque, S Manjura; Kader, SS; Paul, DP; Saha, DK; Das, HN; Rana, MS; Chattopadhyay, K; Hakim, MA
Data(s)

01/05/2012

Resumo

CuFe2O4 nanograins have been prepared by the chemical co-precipitation technique and calcined in the temperature range of 200-1200 degrees C for 3 h. A wide range of grain sizes has been observed in this sintering temperature range, which has been determined to be 4 to 56 nm. Formation of ferrite has also been confirmed by FTIR measurement through the presence of wide band near 600 and 430 cm(-1) for the samples in the as-dried condition. Systematic variation of wave number has been observed with the variation of the calcination temperature. B-H loops exhibit transition from superparamagnetic to ferrimagnetic state above the calcination temperature of 900 degrees C. Coercivity of the samples at lower calcination temperature of 900 degrees C reduces significantly and tends towards zero coercivity, which is suggestive of superparamagnetic transition for the samples sintered below this temperature. Frequency spectrum of the real and imaginary part of complex initial permeability have been measured for the samples calcined at different temperature, which shows wide range of frequency stability. Curie temperature, T-c has been measured from temperature dependence initial permeability at a fixed frequency of 100 kHz. Although there is small variation of T-c with sintering temperature, the reduction of permeability with temperature drastically reduce for lower sintering temperature, which is in conformity with the change of B-H loops with the variation of sintering temperatures.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/44590/1/IEE_tran_on_mag_48_5_1839-1843_2012.pdf

Hoque, S Manjura and Kader, SS and Paul, DP and Saha, DK and Das, HN and Rana, MS and Chattopadhyay, K and Hakim, MA (2012) Effect of Grain Size on Structural and Magnetic Properties of CuFe2O4 Nanograins Synthesized by Chemical Co-Precipitation. In: IEEE TRANSACTIONS ON MAGNETICS, 48 (5, Par). pp. 1839-1843.

Publicador

IEEE Magnetics Society

Relação

http://dx.doi.org/10.1109/TMAG.2011.2173207

http://eprints.iisc.ernet.in/44590/

Palavras-Chave #Materials Engineering (formerly Metallurgy)
Tipo

Journal Article

PeerReviewed