FTIR-spektroskopia kasviuutteiden analysoinnissa


Autoria(s): Kyrö, Minna
Data(s)

01/03/2011

Resumo

FTIR-spektroskopia (Fourier-muunnosinfrapunaspektroskopia) on nopea analyysimenetelmä. Fourier-laitteissa interferometrin käyttäminen mahdollistaa koko infrapunataajuusalueen mittaamisen muutamassa sekunnissa. ATR-liitännäisellä varustetun FTIR-spektrometrin käyttö ei edellytä juuri näytteen valmistusta ja siksi menetelmä on käytössä myös helppo. ATR-liitännäinen mahdollistaa myös monien erilaisten näytteiden analysoinnin. Infrapunaspektrin mittaaminen onnistuu myös sellaisista näytteistä, joille perinteisiä näytteenvalmistusmenetelmiä ei voida käyttää. FTIR-spektroskopian avulla saatu tieto yhdistetään usein tilastollisiin monimuuttuja-analyyseihin. Klusterianalyysin avulla voidaan spektreistä saatu tieto ryhmitellä samanlaisuuteen perustuen. Hierarkkisessa klusterianalyysissa objektien välinen samanlaisuus määritetään laskemalla niiden välinen etäisyys. Pääkomponenttianalyysin avulla vähennetään datan ulotteisuutta ja luodaan uusia korreloimattomia pääkomponentteja. Pääkomponenttien tulee säilyttää mahdollisimman suuri määrä alkuperäisen datan variaatiosta. FTIR-spektroskopian ja monimuuttujamenetelmien sovellusmahdollisuuksia on tutkittu paljon. Elintarviketeollisuudessa sen soveltuvuutta esimerkiksi laadun valvontaan on tutkittu. Menetelmää on käytetty myös haihtuvien öljyjen kemiallisten koostumusten tunnistukseen sekä öljykasvien kemotyyppien havaitsemiseen. Tässä tutkimuksessa arvioitiin menetelmän käyttöä suoputken uutenäytteiden luokittelussa. Tutkimuksessa suoputken eri kasvinosien uutenäytteiden FTIR-spektrejä vertailtiin valikoiduista puhdasaineista mitattuihin FTIR-spektreihin. Puhdasaineiden FTIR-spektreistä tunnistettiin niiden tyypilliset absorptiovyöhykkeet. Furanokumariinien spektrien intensiivisten vyöhykkeiden aaltolukualueet valittiin monimuuttuja-analyyseihin. Monimuuttuja-analyysit tehtiin myös IR-spektrin sormenjälkialueelta aaltolukualueelta 1785-725 cm-1. Uutenäytteitä pyrittiin luokittelemaan niiden keräyspaikan ja kumariinipitoisuuden mukaan. Keräyspaikan mukaan ryhmittymistä oli havaittavissa, mikä selittyi vyöhykkeiden aaltolukualueiden mukaan tehdyissä analyyseissa pääosin kumariinipitoisuuksilla. Näissä analyyseissa uutenäytteet pääosin ryhmittyivät ja erottuivat kokonaiskumariinipitoisuuksien mukaan. Myös aaltolukualueen 1785-725 cm-1 analyyseissa havaittiin keräyspaikan mukaan ryhmittymistä, mitä kumariinipitoisuudet eivät kuitenkaan selittäneet. Näihin ryhmittymisiin vaikuttivat mahdollisesti muiden yhdisteiden samanlaiset pitoisuudet näytteissä. Analyyseissa käytettiin myös muita aaltolukualueita, mutta tulokset eivät juuri poikenneet aiemmista. 2. kertaluvun derivaattaspektrien monimuuttuja-analyysit sormenjälkialueelta eivät myöskään muuttaneet tuloksia havaittavasti. Jatkotutkimuksissa nyt käytettyä menetelmää on mahdollista edelleen kehittää esimerkiksi tutkimalla monimuuttuja-analyyseissa 2. kertaluvun derivaattaspektreistä suppeampia, tarkkaan valittuja aaltolukualueita.

FTIR spectroscopy (Fourier transform infrared spectroscopy) is a fast method of analysis. The use of interferometers in Fourier devices enables the scanning of the whole infrared frequency region in a couple of seconds. There is no need to elaborate sample preparation when the FTIR spectrometer is equipped with an ATR accessory and the method is therefore easy to use. ATR accessory facilitates the analysis of various sample types. It is possible to measure infrared spectra from samples which are not suitable for traditional sample preparation methods. The data from FTIR spectroscopy is frequently combined with statistical multivariate analysis techniques. In cluster analysis the data from spectra can be grouped based on similarity. In hierarchical cluster analysis the similarity between objects is determined by calculating the distance between them. Principal component analysis reduces the dimensionality of the data and establishes new uncorrelated principal components. These principal components should preserve most of the variation of the original data. The possible applications of FTIR spectroscopy combined with multivariate analysis have been studied a lot. For example in food industry its feasibility in quality control has been evaluated. The method has also been used for the identification of chemical compositions of essential oils and for the detection of chemotypes in oil plants. In this study the use of the method was evaluated in the classification of hog’s fennel extracts. FTIR spectra of extracts from different plant parts of hog’s fennel were compared with the measured FTIR spectra of standard substances. The typical absorption bands in the FTIR spectra of standard substances were identified. The wave number regions of the intensive absorption bands in the spectra of furanocoumarins were selected for multivariate analyses. Multivariate analyses were also performed in the fingerprint region of IR spectra, including the wave number region 1785-725 cm-1. The aim was to classify extracts according to the habitat and coumarin concentration of the plants. Grouping according to habitat was detected, which could mainly be explained by coumarin concentrations as indicated by analyses of the wave number regions of the selected absorption bands. In these analyses extracts mainly grouped and differed by their total coumarin concentrations. In analyses of the wave number region 1785-725 cm-1 grouping according to habitat was also detected but this could not be explained by coumarin concentrations. These groupings may have been caused by similar concentrations of other compounds in the samples. Analyses using other wave number regions were also performed, but the results from these experiments did not differ from previous results. Multivariate analyses of second-order derivative spectra in the fingerprint region did not reveal any noticeable changes either. In future studies the method could perhaps be further developed by investigating narrower carefully selected wave number regions of second-order derivative spectra.

Farmasian tiedekunta, farmakognosia

Identificador

http://hdl.handle.net/10138/26102

Idioma(s)

fi

Palavras-Chave #FTIR-spektroskopia #klusterianalyysi #pääkomponenttianalyysi #kumariini #kasviuute #FTIR spectroscopy #cluster analysis #principal component analysis #coumarin #plant extract #classification
Tipo

Opinnäyte