Health risk from the use of roof-harvested rainwater in Southeast Queensland, Australia, as potable or nonpotable water, determined using quantitative microbial risk assessment


Autoria(s): Ahmed, Warish; Vieritz, Alison; Goonetilleke, Ashantha; Gardner, Ted
Data(s)

2010

Resumo

A total of 214 rainwater samples from 82 tanks were collected in urban Southeast Queensland (SEQ) in Australia and analysed for the zoonotic bacterial and protozoan pathogen using real-time binary PCR and quantitative PCR (qPCR). Quantitative Microbial Risk Assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to potential pathogens from potable and non-potable uses of roof-harvested rainwater. Of the 214 samples tested, 10.7%, 9.8%, and 5.6%, and 0.4% samples were positive for Salmonella invA, Giardia lamblia β-giardin , Legionella pneumophila mip, and Campylobacter jejuni mapA genes. Cryptosporidium parvum could not be detected. The estimated numbers of viable Salmonella spp., G. lamblia β-giradin, and L. pneumophila genes ranged from 1.6 × 101 to 9.5 × 101 cells, 1.4 × 10-1 to 9.0 × 10-1 cysts, and 1.5 × 101 to 4.3 × 101 per 1000 ml of water, respectively. Six risk scenarios were considered from exposure to Salmonella spp., G. lamblia and L. pneumophila. For Salmonella spp., and G. lamblia, these scenarios were: (1) liquid ingestion due to drinking of rainwater on a daily basis (2) accidental liquid ingestion due to garden hosing twice a week (3) aerosol ingestion due to showering on a daily basis, and (4) aerosol ingestion due to hosing twice a week. For L. pneumophila, these scenarios were: (5) aerosol inhalation due to showering on a daily basis, and (6) aerosol inhalation due to hosing twice a week. The risk of infection from Salmonella spp., G. lamblia, and L. pneumophila associated with the use of rainwater for showering and garden hosing was calculated to be well below the threshold value of one extra infection per 10,000 persons per year in urban SEQ. However, the risk of infection from ingesting Salmonella spp. and G. lamblia via drinking exceeds this threshold value, and indicates that if undisinfected rainwater were ingested by drinking, then the gastrointestinal diseases of Salmonellosis and Giardiasis is expected to range from 5.0 × 100 to 2.8 × 101 (Salmonellosis) and 1.0 × 101 to 6.4 × 101 (Giardiasis) cases per 10,000 persons per year, respectively. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically examined. Nonetheless, it would seem prudent to disinfect rainwater for potable use.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/38861/

Publicador

American Society of Microbiology

Relação

http://eprints.qut.edu.au/38861/1/38861.pdf

DOI:10.1128/AEM.00944-10

Ahmed, Warish, Vieritz, Alison, Goonetilleke, Ashantha, & Gardner, Ted (2010) Health risk from the use of roof-harvested rainwater in Southeast Queensland, Australia, as potable or nonpotable water, determined using quantitative microbial risk assessment. Applied and Environmental Microbiology, 76(22), pp. 7382-7391.

Direitos

Copyright 2010 American Society of Microbiology.

Fonte

Faculty of Built Environment and Engineering; School of Urban Development

Palavras-Chave #090701 Environmental Engineering Design #090702 Environmental Engineering Modelling #Roof-harvested rainwater #Fecal pollution #Zoonotic pathogens #Quantitative PCR #QMRA
Tipo

Journal Article