Biomechanical force displacement analysis of strength of fixation of tracker holding devices to bone in computer aided joint replacement


Autoria(s): Deep, Kamal; Donnelly, William J.; Morar, Y.; Ward, Nicola; Tevelen, Gregory A.; Dunster, Kimble; Crawford, Ross
Contribuinte(s)

Scott, James

Data(s)

2006

Resumo

Computer aided joint replacement surgery has become very popular during recent years and is being done in increasing numbers all over the world. The accuracy of the system depends to a major extent, on accurate registration and immobility of the tracker attachment devices to the bone. This study was designed to asses the forces needed to displace the tracker attachment devices in the bone simulators. Bone simulators were used to maintain the uniformity of the bone structure during the study. The fixation devices tested were 3mm diameter self drilling, self tapping threaded pin, 4mm diameter self tapping cortical threaded pin, 5mm diameter self tapping cancellous threaded pin and a triplanar fixation device ‘ortholock’ used with three 3mm pins. All the devices were tested for pull out, translational and rotational forces in unicortical and bicortical fixation modes. Also tested was the normal bang strength and forces generated by leaning on the devices. The forces required to produce translation increased with the increasing diameter of the pins. These were 105N, 185N, and 225N for the unicortical fixations and 130N, 200N, 225N for the bicortical fixations for 3mm, 4mm and 5mm diameter pins respectively. The forces required to pull out the pins were 1475N, 1650N, 2050N for the unicortical, 1020N, 3044N and 3042N for the bicortical fixated 3mm, 4mm and 5mm diameter pins. The ortholock translational and pull out strength was tested to 900N and 920N respectively and still it did not fail. Rotatory forces required to displace the tracker on pins was to the magnitude of 30N before failure. The ortholock device had rotational forces applied up to 135N and still did not fail. The manual leaning forces and the sudden bang forces generated were of the magnitude of 210N and 150N respectively. The strength of the fixation pins increases with increasing diameter from three to five mm for the translational forces. There is no significant difference in pull out forces of four mm and five mm diameter pins though it is more that the three mm diameter pins. This is because of the failure of material at that stage rather than the fixation device. The rotatory forces required to displace the tracker are very small and much less that that can be produced by the surgeon or assistants in single pins. Although the ortholock device was tested to 135N in rotation without failing, one has to be very careful not to put any forces during the operation on the tracker devices to ensure the accuracy of the procedure.

Identificador

http://eprints.qut.edu.au/28402/

Publicador

British Editorial Society of Bone and Joint Surgery

Relação

http://proceedings.jbjs.org.uk/cgi/content/abstract/88-B/SUPP_III/439-c

Deep, Kamal, Donnelly, William J., Morar, Y., Ward, Nicola, Tevelen, Gregory A., Dunster, Kimble, & Crawford, Ross (2006) Biomechanical force displacement analysis of strength of fixation of tracker holding devices to bone in computer aided joint replacement. In Scott, James (Ed.) Journal of Bone and Joint Surgery Orthopaedic Proceedings, British Editorial Society of Bone and Joint Surgery, London, Heathrow , p. 439.

Direitos

Copyright © 2006 by British Editorial Society of Bone and Joint Surgery

Fonte

Faculty of Built Environment and Engineering; School of Engineering Systems

Palavras-Chave #090302 Biomechanical Engineering #Navigation #Tracker #Fixation
Tipo

Conference Paper