Generation of a 3D proximal femur shape from a single projection 2D radiographic image.


Autoria(s): Langton, Christian; Pisharody, S.; Keyak, J. H.
Data(s)

01/03/2009

Resumo

Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/27530/

Publicador

Springer UK

Relação

http://eprints.qut.edu.au/27530/1/27530.pdf

DOI:10.1007/s00198-008-0665-4

Langton, Christian, Pisharody, S., & Keyak, J. H. (2009) Generation of a 3D proximal femur shape from a single projection 2D radiographic image. Osteoporosis International, 20(3), pp. 455-461.

Direitos

Copyright 2008 International Osteoporosis Foundation & National Osteoporosis Foundation

The original publication is available at SpringerLink http://www.springerlink.com

Fonte

Faculty of Science and Technology; Institute of Health and Biomedical Innovation; School of Physical & Chemical Sciences

Palavras-Chave #110320 Radiology and Organ Imaging #029903 Medical Physics #080110 Simulation and Modelling #080106 Image Processing #Geometric morphometrics #Proximal femur #Three-dimensional shape #Volumetric density
Tipo

Journal Article